Feb 2511:56 AM 6.4 Product-to-Sum and Sum-to-Product Identities Name: __________________ Objectives: Students will be able to verify trigonometric identities involving multiple angles using the product-to-sum and sum-to-product formulas. Product-to-Sum Identities cosxcosy = (1/2)[cos(x - y) + cos(x + y)] sinxsiny = (1/2)[cos(x - y) - cos(x + y)] sinxcosy = (1/2)[sin(x + y) + sin(x - y)] cosxsiny = (1/2)[sin(x + y) - sin(x - y)] Feb 1811:43 AM 1 Examples Use the product-to-sum identities to rewrite each expression as the sum or difference of two functions. Simplify where possible. 1.) cosxsinx 2.) sin(3π/8)cos(π/8) 3.) Find the exact value of cos105osin75o. Feb 1811:59 AM Sum-to-Product Identities cosx + cosy = 2cos x + y cos x - y 2 2 cosx - cosy = -2sin x + y sin x - y 2 2 sinx + siny = 2sin x + y cos x - y 2 2 sinx - siny = 2sin x - y cos x + y 2 2 Feb 1812:00 PM 2 Examples Use sum-to-product identities to rewrite each expression as a product. Simplify where possible. 1.) sin22o + sin8o 2.) cos(π/12) + cos(π/3) 3.) sin5x - sin3x Assignment: Page 602: 7 - 39 every other odd Feb 1812:07 PM Feb 2512:27 PM 3
© Copyright 2026 Paperzz