Introduction Results Summary and Outlook B → D (∗) Form Factors from QCD Sum Rules with B-Meson Distribution Amplitudes Sven Faller (with A. Khodjamirian, C. Klein and Th. Mannel) Theoretical Physics 1 University of Siegen EF Orsay, 14. November 07 Sven Faller B → D (∗) form factors Introduction Results Summary and Outlook Motivation |Vcb | from exclusive B → D (∗) decay G2 |Vcb |2 mB5 q 2 dΓ(B̄ → Deν̄e ) = F (w − 1)3 r 3 (1 + r )2 FD (w)2 , dw 48π 3 G2 |Vcb |2 mB5 p dΓ(B̄ → D ∗ eν̄e ) = F (w − 1)(w + 1)r ∗3 (1 − r ∗ )2 dw 48π 3 » – 4w 1 − 2wr ∗ + r ∗2 · 1+ FD ∗ (w)2 . ∗ 2 w +1 (1 − r ) r = mD /mB , r ∗ = mD ∗ /mB FD and FD ∗ combinations of form factors h+ (w), h− (w) and hV (w) v µ = (p + q)µ /mB and v 0µ = pµ /mD (∗) four-velocities 2 2 w = (v · v 0 ) = [mB2 + mD (∗) − q ]/[2mB mD (∗) ] 1/mc , 1/mb -corrections to form factors, need full QCD Sven Faller B → D (∗) form factors Introduction Results Summary and Outlook new method: LCSR with B-meson distribution amplitudes (DA0 s) form factors B → π, K and B → ρ, K ∗ [A. Khodjamirian, Th. Mannel and N. Offen (2007)] s B b =⇒ B b D, D * p, r, K * apply this technique for B → D (∗) form factors p = c B B () b D* q Sven Faller B → D (∗) form factors Introduction Results Summary and Outlook Form Factors standard definition + ± hD(p)|c̄γµ b|B̄(p + q)i = 2pµ fBD (q 2 ) + qµ fBD ∗ hD ∗ (p)|V µ |B̄(p + q)i = 2V BD µναβ ∗ν qα pβ mB + mD ∗ form factors adjusted to Isgur-Wise limit [Isgur and Wise (1989, 1990), Neubert (1994)] hD(p)|V µ |B̄(p + q)i = h+ (w)(v + v 0 )µ + h− (w)(v − v 0 )µ √ mB mD hD ∗ (v 0 , )|V µ |B̄(v )i p = hV (w)µναβ ∗ν vα0 vβ ∗ mB mD Sven Faller B → D (∗) form factors Introduction Results Summary and Outlook B → D (∗) correlation functions, contributions of two- and three-particle B-meson DA0 s p c B h0|q̄α (x)[x, 0]hv β (0)|B̄v i = » Z ∞ ifB mB −iωv ·x − dωe (1 + / v) 4 0 ff – B B φ+ (ω) − φ− (ω) B · φ+ (ω) − x γ5 / 2v · x βα B b q finite c-quark mass, c-quark virtual B-meson DA0 s defined in heavy-quark effective theory (HQET) two particle DA0 s φB+ (ω) and φB− (ω) [Grozin and Neubert (1997), Braun et al. (2004)] B→D current iγ5 + ± fBD , fBD form factor h+ , h− B → D∗ γµ VBD ∗ Sven Faller hV model φ+ = ω ω2 0 e−(ω/ω0 ) = ωω φB − 0 ω0 = λB = 460 ± 110 MeV B → D (∗) form factors Introduction Results Summary and Outlook Isgur-Wise Limit f+ (q 2 ), f− (q 2 ) and V (q 2 ) → h+ (w), h− (w) and hV (w), heavy quark limit mB = mb + Λ̄, mD = mc + Λ̄ Borel-parameter M 2 = 2mc τ (∗) threshold s0D = mc2 + mc β0 √ fB,D(∗) → f̃B,D(∗) / mB,D(∗) Isgur Wise limit mc mb,c → ∞, but m = const. = κ2 b h+ (w) = hV (w) = ξ(w) and h− (w) = 0 zero recoil point ξ(1) = 1 kinematic range for w 1≤w ≤1+ Sven Faller [mB − mD (∗) ]2 2mB mD (∗) B → D (∗) form factors Introduction Results Summary and Outlook Results for B → D ∗ sum rule for the form factor V BD Isgur-Wise function: hV (w) = ∗ [Khodjamirian et al. (2005)] √ 2 mB mD ∗ BD ∗ (w) mB +mD ∗ V Isgur-Wise limit hV (w) = f̃B β0 /w Z f̃D ∗ where κ = 0 q „ 2 « ff » „ « – Λ̄ ω κ 1 B 1 dω exp −w + · φ− (ω) + 1 − φB (ω) + τ 2 τ 2w 2w mc mb and ω0 = β0 w. three-particle contribution suppressed Sven Faller B → D (∗) form factors Introduction Results Summary and Outlook Isgur-Wise limit: hV (w) 1.4 hV HwL HmB - mD* L2 +1 2 mB mD* 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.2 1.4 1.6 w 2 2 3 < M ≤ 6 GeV Sven Faller B → D (∗) form factors 1.8 Introduction Results Summary and Outlook Results for B → D Isgur-Wise h+ (w) BD h+ (w) = fB mB mc 2f 2κmD D Z σ(s ,q 2 ) 0 0 „ + 2 ff » mc mB [mc + mB (κ2 − σ)] B −s(σ, q 2 (w) + mD · exp φ− (ω) 2 + m2 − q 2 2 M σ̄ 2 mB c mc + mB (κ2 − σ) σ̄ − mB mc [mc + mB (κ2 − σ)] 2 + m2 − q 2 σ̄ 2 mB c « B φ+ (ω) « – „ 2 1 mc mB 2mB σ̄[mc + mB (κ2 − σ)] B BD − − + Φ± (ω) + ∆h+ 2 2 2 2 2 2 2 2 2 σ̄ σ̄ mB + mc − q (σ̄ mB + mc − q ) Isgur-Wise limit h+ (w) = f̃B f̃D β0 /w Z dω exp 0 „ 2 « ff » „ « – ω κ Λ̄ 1 B 1 −w + · φ− (ω) + 1 − φB (ω) + τ 2 τ 2w 2w BD → 0 Isgur-Wise limit: three particle contribution ∆h+ Sven Faller B → D (∗) form factors Introduction Results Summary and Outlook Isgur-Wise limit: h+ (w) 1.4 h+ HwL HmB - mD L2 +1 2 mB mD 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.2 1.4 1.6 w Sven Faller B → D (∗) form factors 1.8 Introduction Results Summary and Outlook Results for B → D Isgur-Wise function h− (w) BD h− (w) = fB mB mc Z σ(s ,q 2 ) 0 2f 2κmD D exp 2 −s(σ, q 2 (w) + mD M2 0 » · mc mB [mc − mB (κ2 + σ)] B φ− (ω) 2 + m2 − q 2 σ̄ 2 mB c „ + mc − mB (κ2 + σ) σ̄ „ − ff » mc mB [mc + mB (κ2 − σ)] B · φ− (ω) 2 + m2 − q 2 σ̄ 2 mB c 1 σ̄ − + mB mc [mB (κ2 + σ) − mc ] mc mB 2 σ̄ 2 mB + mc2 − q2 2 + m2 − q 2 σ̄ 2 mB c − 2 (σ̄ 2 mB + mc2 − BD and ∆h− →0 Sven Faller B φ+ (ω) 2 2σ̄mB mc [mB (κ2 + σ) − mc Isgur-Wise limit h− (w) ≡ 0 « B → D (∗) form factors q 2 )2 – « B BD Φ̄± (ω) + ∆h− Introduction Results Summary and Outlook Summary and Outlook Summary new light-cone sum rules for B → D (∗) in terms of B-meson DA0 s obey Isgur-Wise limit for the form factors h+ , h− and hV Outlook 1/mc and partial 1/mb -expansion of the Isgur-Wise functions BD BD ABD 1 , A2 and A3 form factors for the differential decay rates dΓ(B̄ → D (∗) eν̄e ) → |Vcb | dynamics at the zero-recoil point (w = 1) perturbative αs -corrections Sven Faller B → D (∗) form factors
© Copyright 2026 Paperzz