X Minimize 2 2 X 12 1 X 1 2 subject to X1 X 2 t 4 X 2 t 0.25 X 12 2 i.e., Minimize s.t. X 22 2 X 12 X 2 X 14 1 2 X 1 X 12 4 X 11 X 21 d 1 0.25 X 12 X 21 2 X 21 d 1 © Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa 4/11/2006 page 1 of 51 page 2 of 51 Next, rewrite the signomial constraint: Introduce a new variable X3 X 22 X 14 1 X 12 d X 3 2 X 12 X 2 2 X 1 d so that the signomial now appears in a constraint: Minimize 4/11/2006 X3 subject to X 22 2 X 12 X 2 X 14 1 2 X 1 X 12 d X 3 1 1 4X X 1 2 X 22 X 14 1 X 12 d1 X 3 2 X 12 X 2 2 X 1 If we condense the denominator d1 X 3 2 X 12 X 2 2 X 1 0.25 X 12 X 21 2 X 21 d 1 into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation! 4/11/2006 page 3 of 51 4/11/2006 page 4 of 51 Condensing the numerator: G1 i i n for all G satisfying ¦G i § ui · ¸ 1 © i ¹ for G such that 1, G i t 0 G1 G 2 G 3 1, G i t 0, i 1,2,3 i 1 with equality if & only if u1 u2 G1 G2 G1 " G3 2 1 ¦u t ¨ G i 1 G2 § X · § 2X 2X · § 2X · X 3 2 X X 2 2 X1 t ¨ 3 ¸ ¨ 1 2 ¸ ¨ 1 ¸ © G1 ¹ © G 2 ¹ © G 3 ¹ Gi n n G2 G3 §1· § 2· §2· X 3 2 X X 2 2 X 1 t ¨ ¸ ¨ ¸ ¨ ¸ u X 12G 2 G3 X 2G 2 X 3G1 G 2 ¹ © G 2 ¹ © G3 ¹ © un 2 1 Gn coefficient C G 4/11/2006 page 5 of 51 4/11/2006 page 6 of 51 We choose G so that, for a given X , so that G1 X3 X 3 2 X 12 X 2 2 X 1 G2 2 1 2 1 2X X2 X 3 2 X X 2 2 X1 G3 2 X1 X 3 2 X 12 X 2 2 X 1 Minimize X3 subject to X 22 X 14 1 X 12 d1 X 3 2 X 12 X 2 2 X 1 4 X 11 X 21 d 1 0.25 X 12 X 21 2 X 21 d 1 G1 G 2 G 3 1 and the approximation is exact at X . 4/11/2006 page 7 of 51 4/11/2006 page 8 of 51 2,2,1 as the initial point. We will choose X X3 1 G1 2 X 12 X 2 16 G 2 2 X1 4 G3 G1 So we get the posynomial approximation X 22 X 14 1 X 12 d1 3.77409X 11.7143 X 20.7619 X 30.04762 1 0.047619 21 16 0.761905 21 4 0.190476 21 which is the posynomial constraint: 0.264965 X 11.7143 X 21.2381 X 30.04762 G3 G2 §1· § 2· §2· 3.77409 ¨ ¸ ¨ ¸ ¨ ¸ G G G © 2¹ © 2¹ © 3¹ X 12G 2 G3 X 2G 2 X 3G1 X 11.7143 X 20.7619 X 30.04762 4/11/2006 0.264965 X 12.28571 X 20.7619 X 30.04762 0.264965 X 11.7143 X 20.7619 X 30.04762 0.264965 X 10.28571 X 20.7619 X 30.04762 d 1 page 9 of 51 4/11/2006 page 10 of 51 4/11/2006 page 12 of 51 Posynomial GP approximation of the signomial GP: Minimize X3 subject to 0.264965 X 11.7143 X 21.2381 X 30.04762 0.264965 X 12.28571 X 20.7619 X 30.04762 0.264965 X 11.7143 X 20.7619 X 30.04762 0.264965 X 10.28571 X 20.7619 X 30.04762 d 1 4 X 11 X 21 d 1 0.25 X 12 X 21 2 X 21 d 1 4/11/2006 page 11 of 51 Rosenbrock et al. ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Coefficients and exponent matrix: Number of variables: 3 Number of polynomials: 4 Total number of terms: 10 Degrees of difficulty: 6 Terms per polynomial: 1 6 1 2 t p Ct ¯¯¯¯¯¯¯¯¯¯ 1 1 1 -----------2 2 1 3 2 ¯2 4 2 1 5 2 1 6 2 ¯2 7 2 1 -----------8 3 4 -----------9 4 0.25 10 4 2 ------------ | | | | | | | | | | | | | | | | exponents ¯¯¯¯¯¯¯¯¯ 0 0 1 --------0 2 ¯1 2 1 ¯1 4 0 ¯1 0 0 ¯1 1 0 ¯1 2 0 ¯1 --------¯1 ¯1 0 --------2 ¯1 0 0 ¯1 0 --------- t = term number, p = polynomial Ct = coefficient 4/11/2006 page 13 of 51 4/11/2006 Current Parameters ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Tolerances for duality gap: 0.0001 Tolerances for constraints (maximum allowable infeasibility) Bounds on variables # var LB UB 1 X[1] 0.00001 100000 2 X[2] 0.00001 100000 3 X[3] 0.00001 100000 page 14 of 51 = 0.0001 Tolerance "epsilon" for stopping criterion: epsilon > sum |d_rho|, where d_rho is the vector of changes in the weights for the terms of the polynomials: epsilon = 0.0005 Maximum # Posynomial subproblems to be solved = 5 Maximum # LPs to be solved per posynomial subproblem = 5 4/11/2006 page 15 of 51 4/11/2006 page 16 of 51 User-specified Grid Point ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable 1 X[1] 2 X[2] User-specified Grid Point ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ value 2 2 i ¯¯ 1 2 3 The objective function value for this point is 5 The values of the constraint polynomials are: k P(k) 2 1 3 1.5 variable X[1] X[2] X[3] value ¯¯¯¯¯ 2 2 1 The objective function value for this point is 1 The values of the constraint polynomials are: k P(k) 2 5 3 1 4 1.5 4/11/2006 page 17 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Major Iteration # 1 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 2 2 X[2] 2 3 X[3] 1 4/11/2006 constraint Value 2 5.0 3 1.0 4 1.5 page 18 of 51 Infeasibility 4.0 0.0 0.5 Weights of negative terms, used for condensation: poly term value 2 2 0.761905 2 5 0.190476 term# poly# value 1 1 1.0 2 2 4.0 3 2 ¯16.0 4 2 16.0 5 2 1.0 6 2 ¯4.0 7 2 4.0 8 3 1.0 9 4 0.5 10 4 1.0 Objective function = 1 4/11/2006 page 19 of 51 4/11/2006 page 20 of 51 Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Number of variables: 2 Number of posynomials: 10 Total number of terms: 14 Degrees of difficulty: 11 Terms per posynomial: 1 4 1 2 1 1 1 1 1 1 (includes bounds on variables to ensure dual feasibility) Coefficients and exponent matrix: t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Ct 1 0.264965 0.264965 0.264965 0.264965 4 0.25 2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 exponents 0 ¯1.71429 2.28571 ¯1.71429 0.285714 ¯1 2 0 ¯1 0 0 1 0 0 0 1.2381 ¯0.761905 ¯0.761905 ¯0.761905 ¯1 ¯1 ¯1 0 ¯1 0 0 1 0 1 ¯0.047619 ¯0.047619 ¯0.047619 ¯0.047619 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 21 of 51 4/11/2006 page 22 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.597846 2 X[2] 2.636614 3 X[3] 0.365643 Major Iteration # 2 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.597846 2 X[2] 2.636614 3 X[3] 0.365643 Posynomial objective functions: Primal: 0.365643 Dual: 0.365643 Duality Gap: 0 = 0 percent term# poly# value 1 1 0.365643 2 2 19.012371 3 2 ¯36.820482 4 2 17.827182 5 2 2.734911 6 2 ¯8.739933 7 2 6.982533 8 3 0.949464 9 4 0.242082 10 4 0.758549 Objective function = 0.365643 4/11/2006 page 23 of 51 4/11/2006 page 24 of 51 constraint 2 3 4 Value 0.996581 0.949464 1.000631 Infeasibility Lambda 0.000000000 24.0059 0.000000000 0.0000 0.000631135 0.0000 small infeasibility! t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Weights of negative terms, used for condensation: poly term 2 2 2 5 value 0.790811 0.187712 Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Coefficients and exponent matrix: change 0.02890610 0.00276453 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Ct 1 0.283551 0.283551 0.283551 0.283551 4 0.25 2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 exponents 0 ¯1.76933 2.23067 ¯1.76933 0.230667 ¯1 2 0 ¯1 0 0 1 0 0 0 1.20919 ¯0.790811 ¯0.790811 ¯0.790811 ¯1 ¯1 ¯1 0 ¯1 0 0 1 0 1 ¯0.0214775 ¯0.0214775 ¯0.0214775 ¯0.0214775 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 25 of 51 4/11/2006 page 26 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.561004 2 X[2] 2.605930 3 X[3] 0.289182 Major Iteration # 3 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.561004 2 X[2] 2.605930 3 X[3] 0.289182 term# poly# value 1 1 0.289182 2 2 23.483061 3 2 ¯43.916735 4 2 20.532668 5 2 3.458033 6 2 ¯10.796007 7 2 8.426306 8 3 0.983316 9 4 0.233768 10 4 0.767480 Posynomial objective functions: Primal: 0.289182 Dual: 0.289182 Duality Gap: 0 = 0 percent Objective function = 0.289182 4/11/2006 page 27 of 51 4/11/2006 page 28 of 51 constraint 2 3 4 Value 1.187326 0.983316 1.001248 Infeasibility Lambda 0.18732621 3.4648 large infeasibility! 0.00000000 0.0000 0.00124837 46.5604 Weights of negative terms, used for condensation: poly term 2 2 2 5 value 0.788271 0.193780 change 0.00253994 0.00606819 Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Coefficients and exponent matrix: t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Ct 1 0.284107 0.284107 0.284107 0.284107 4 0.25 2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 exponents 0 ¯1.77032 2.22968 ¯1.77032 0.229678 ¯1 2 0 ¯1 0 0 1 0 0 0 1.21173 ¯0.788271 ¯0.788271 ¯0.788271 ¯1 ¯1 ¯1 0 ¯1 0 0 1 0 1 ¯0.0179492 ¯0.0179492 ¯0.0179492 ¯0.0179492 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 29 of 51 Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i 1 2 3 4/11/2006 page 30 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Major Iteration # 4 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.549938 2 X[2] 2.600550 3 X[3] 0.347202 variable value X[1] 1.549938 X[2] 2.600550 X[3] 0.347202 Posynomial objective functions: Primal: 0.347202 Dual: 0.347202 Duality Gap: 0 = 0 percent term# poly# value 1 1 0.347202 2 2 19.478183 3 2 ¯35.986660 4 2 16.621670 5 2 2.880168 6 2 ¯8.928162 7 2 6.919047 8 3 0.992386 9 4 0.230942 10 4 0.769068 Objective function = 0.347202 4/11/2006 page 31 of 51 4/11/2006 page 32 of 51 constraint Value Infeasibility Lambda 2 0.984246 0.0000000000 11.9815 3 0.992386 0.0000000000 0.0000 4 1.000010 0.0000100608 47.3088 Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Coefficients and exponent matrix: small infeasibility! Weights of negative terms, used for condensation: poly term value change 2 2 0.783770 0.004500932 2 5 0.194451 0.000670688 Notice that the solution seems to alternate between one with small infeasibility and objective approximately 0.347, and one with large infeasibility and objective approximately 0.284 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Ct 1 0.280612 0.280612 0.280612 0.280612 4 0.25 2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 exponents 0 ¯1.76199 2.23801 ¯1.76199 0.238009 ¯1 2 0 ¯1 0 0 1 0 0 0 1.21623 ¯0.78377 ¯0.78377 ¯0.78377 ¯1 ¯1 ¯1 0 ¯1 0 0 1 0 1 ¯0.0217795 ¯0.0217795 ¯0.0217795 ¯0.0217795 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 33 of 51 4/11/2006 page 34 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.548186 2 X[2] 2.595916 3 X[3] 0.284417 Major Iteration # 5 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.548186 2 X[2] 2.595916 3 X[3] 0.284417 Posynomial objective functions: Primal: 0.284417 Dual: 0.284417 Duality Gap: 0 = 0 percent term# poly# value 1 1 0.284417 2 2 23.693282 3 2 ¯43.753293 4 2 20.199298 5 2 3.515961 6 2 ¯10.886721 7 2 8.427333 8 3 0.995282 9 4 0.230832 10 4 0.770441 Objective function = 0.284417 4/11/2006 page 35 of 51 4/11/2006 page 36 of 51 constraint Value 2 1.195860 3 0.995282 4 1.001273 Infeasibility Lambda 0.19585984 4.05055 large infeasibility! 0.00000000 0.00000 0.00127279 45.91482 Weights of negative terms, used for condensation: poly term value change 2 2 0.786364 0.00259380 2 5 0.195664 0.00121298 Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Coefficients and exponent matrix: t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Ct 1 0.28334 0.28334 0.28334 0.28334 4 0.25 2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 exponents 0 ¯1.76839 2.23161 ¯1.76839 0.231609 ¯1 2 0 ¯1 0 0 1 0 0 0 1.21364 ¯0.786364 ¯0.786364 ¯0.786364 ¯1 ¯1 ¯1 0 ¯1 0 0 1 0 1 ¯0.0179727 ¯0.0179727 ¯0.0179727 ¯0.0179727 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 37 of 51 4/11/2006 page 38 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.549449 2 X[2] 2.600175 3 X[3] 0.347004 Major Iteration # 6 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.549449 2 X[2] 2.600175 3 X[3] 0.347004 Posynomial objective functions: Primal: 0.347004 Dual: 0.347004 Duality Gap: 0 = 0 percent term# poly# value 1 1 0.347004 2 2 19.483638 3 2 ¯35.979230 4 2 16.610155 5 2 2.881808 6 2 ¯8.930426 7 2 6.918618 8 3 0.992842 9 4 0.230830 10 4 0.769179 Objective function = 0.347004 4/11/2006 page 39 of 51 4/11/2006 page 40 of 51 constraint 2 3 4 Value 0.984563 0.992842 1.000009 Infeasibility Lambda 0.0000000000 5.39064 0.0000000000 0.00000 0.0000088935 54.00238 small infeasibility! Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Coefficients and exponent matrix: t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Weights of negative terms, used for condensation: poly term value change 2 2 0.783696 0.00266745 2 5 0.194522 0.00114178 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Ct 1 0.280582 0.280582 0.280582 0.280582 4 0.25 2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 exponents 0 ¯1.76191 2.23809 ¯1.76191 0.238086 ¯1 2 0 ¯1 0 0 1 0 0 0 1.2163 ¯0.783696 ¯0.783696 ¯0.783696 ¯1 ¯1 ¯1 0 ¯1 0 0 1 0 1 ¯0.0217819 ¯0.0217819 ¯0.0217819 ¯0.0217819 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 41 of 51 4/11/2006 page 42 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.54807 2 X[2] 2.59582 3 X[3] 0.28439 Major Iteration # 7 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.54807 2 X[2] 2.59582 3 X[3] 0.28439 Posynomial objective functions: Primal: 0.28439 Dual: 0.28439 Duality Gap: 0 = 0 percent term# poly# value 1 1 0.284390 2 2 23.693892 3 2 ¯43.749274 4 2 20.195068 5 2 3.516301 6 2 ¯10.886941 7 2 8.426858 8 3 0.995394 9 4 0.230805 10 4 0.770468 Objective function = 0.28439 4/11/2006 page 43 of 51 4/11/2006 page 44 of 51 constraint Value 2 1.195904 3 0.995394 4 1.001273 Infeasibility Lambda 0.19590358 4.05662 0.00000000 0.00000 0.00127302 45.90966 large infeasibility! Weights of negative terms, used for condensation: poly term value change 2 2 0.786345 0.00264891 2 5 0.195681 0.00115910 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 p 1 2 2 2 2 3 4 4 5 6 7 8 9 10 Condensation of Signomial GP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Ct exponents 1 0 0 0.283332 ¯1.76837 1.21365 0.283332 2.23163 ¯0.786345 0.283332 ¯1.76837 ¯0.786345 0.283332 0.231629 ¯0.786345 4 ¯1 ¯1 0.25 2 ¯1 2 0 ¯1 0.00001 ¯1 0 0.00001 0 ¯1 0.00001 0 0 0.00001 1 0 0.00001 0 1 0.00001 0 0 1 ¯0.0179739 ¯0.0179739 ¯0.0179739 ¯0.0179739 0 0 0 0 0 ¯1 0 0 1 t = term number, p = posynomial, Ct = coefficient 4/11/2006 page 45 of 51 4/11/2006 page 46 of 51 <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> Posynomial GP via Generalized LP ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.549436 2 X[2] 2.600165 3 X[3] 0.347001 Major Iteration # 8 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ i variable value 1 X[1] 1.549436 2 X[2] 2.600165 3 X[3] 0.347001 term# poly# value 1 1 0.347001 2 2 19.483698 3 2 ¯35.978894 4 2 16.609793 5 2 2.881838 6 2 ¯8.930448 7 2 6.918579 8 3 0.992854 9 4 0.230827 10 4 0.769182 Posynomial objective functions: Primal: 0.347001 Dual: 0.347001 Duality Gap: 0 = 0 percent Objective function = 0.347001 4/11/2006 page 47 of 51 4/11/2006 page 48 of 51 constraint 2 3 4 Value 0.984567 0.992854 1.000009 Infeasibility Lambda 0.00000000000 5.32287 0.00000000000 0.00000 0.00000886453 54.06786 small infeasibility! <>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<> 4/11/2006 page 49 of 51 Dropping two initial points from the plot: “zig-zagging” behavior is apparent! 4/11/2006 page 51 of 51 4/11/2006 page 50 of 51
© Copyright 2026 Paperzz