NAME _ DATE _ SCORE _ Practice 54 Coordinate Geometry Proofs Supply the missing coordinates without introducing any new letters. 1. Rectangle 2. Parallelogram y y O(?, ?) (0, a) 1 - - - - - - - , P(?, ?) (d, e) o (b,O) o x P(.----) x Q(----) 4. Equilateral Triangle . 3. Isosceles Trapezoid y y (0/) R(?, ?) (g, h) o S(?,?) x R( ) 0 S(. x (j, 0) ), T( ) 5. Use coordinate geometry to prove that the diagonals of a square are congruent. First draw a figure and choose convenient axes and coordinates. 6. Isosceles right triangle OBe with median OM is shown in the diagram. Find the coordinates of M and use coordinate geometry to prove that OM ..L Be. y C(0,2a) o M( 164 x B(2a, 0) ) RESOURCE BOOK for GEOMETRY Copyright © by Houghton Mifflin Company. All rights reserved. NAME _ DATE SCORE _ Coordinate Geometry Proofs Supply the missing coordinates without introducing any new letters. 1. Rectangle 2. 30°- 60°- 90° triangle y 3. Equilateral triangle y y O(O,d) 0(0,0) x o o B(h.O) C= CO, 7) 0 E= _ _ H(h.O) G= _ 1= Supply the missing statements and reasons to complete the proof that a diagonal of a parallelogram divides the parallelogram into two congruent triangles. y O(d, c) C(b+d, c) 4. Given: LJOBCD .r Prove: 60BC == 6CDO o B (h, 0) Proof: Statements Reasons 1. 1. OBCD is a parallelogram. 2. OB OD = ViI; CD = Yd + c 2 2 ; = ViI; BC 2.' = Vd + 2 c _ 2 3. OB = CD; OD = BC 3. .4. ~--~------------- 4. Reflexive Property 5. OB == CD; OD == BC 5. 6. 6. 5. Use coordinate geometry to prove that the midpoint of the hypotenuse of a right triangle is equidistant from the vertices. --------- y Given: M is the midpoint of the hypotenuse of right 60AB. Prove: MO = MA = MB Proof: x o A (20. 0) i 1 I I 1 1 1 ·1 PRACTICE MASTERS for GEOMETRY Copyright © by Houghton Mifflin Company. All rights reserved. 83
© Copyright 2026 Paperzz