Date: _ _ _ _ _ __
Geometry Honors
Unit 3 Quiz 1 Review
Sections 3.5,4.1-4.3.4.6
1. Find the value of each variable.
~8X+2)<>
2.
~+3)<>
x=
---=;I.o,---,J,---o
y=
II '?:>
z==
iSO
0
0
~Xi 2 t-9)(-t3::
r
\7'k$:c "'to
.'
-;~.
-- S"
~-QX r.:".
g--S
-~~
"7
--(7
x==----:~_O
3. Use the diagram at the right to answer the questions.
ft.
Which angle is an exterior angle?
b. What are its remote interior angles?
c. Find mLI and mL2.
W\ L \ -:;
1 D~>~ -: f0()
mLI
==
1o g
mL2
=
>72.
0
0
Jr.XYZ == JKLM. List each of the following.
4. Four pairs of congruent sides.
5. Four pairs of congruent angles.
L
0
o
W
X
==L
==L
J
I(
,
DO
o
==L
L
==L
t~1
DO
ABCD == FGHJ. Find the measures of the given angles or lengths of the given sides.
6. mLB= 3y, mLG=y+ 50
y=
mLB=
mLG=
o
-7..),.-.
o
o
7. CD= 2x+ 3; HJ= 3x+2
C[) -
x
Hj xi-i 1 -:.c ~2v.X1 '2 2 li\.:J
-2.,~
-') X
, 0:: X-t- i
-
=--1-/__
CD= - -
- ?.
HJ= - - -
I~X
n
Would you use SSS or SAS to prove the triangles congruent? If so, write a congruence statement. Ifthere
is not enough information to prove the triangles congruent by SSS or SAS, write not enough iriformation.
ExpJain your answer.
j
" ~1.
8.
~ Ytot ~~OcIJ&-1. Y\'jO
tJEI
DLiR
E
P
IV
~
F
11.
10.
(
o~
R
E
Name two triangles that are congruent by ASA.
12.
R
R
For each pair oftriangles, tell why the two triangles are congruent. Give the congruence statement.
M
13.
14.
Nr.?(
~Q
H
Proof Practice
Complete the following proofs.
15.
Given: LWVZ and LVWX"are right angles.
WZ::::VX
It' I'- A, ....UseJ
V\'/fu ~.
Prove: AWVZ:::: AVWX
Statements
(DL
WV::r. G-tJ.
~
Reasons
L
1/ y../X
.:"...~'-----
~j=l. ";;:
VX ®
o.rt. (',
J
l ~)
0-vvJ ::: vJ'J @ LL
® l:.:.wV1-~ v.-·4 L\. VvJ K ~ft
r'_.
)
nJht 6. S.
L5> L\tJVt- ;/~vvJX L
16.
Given: AE II BD; EB II DC; AE == BD
Prove: MER == tJ.BDC
Reasons
Statements
d)
Af 1/ B!7) Eg (I pc / A£. :;v 01) ~~)
fi\ .. rQ.. n -:I' L f)ot.!. r® , ~oA /'v
U "- I:;. \ "u .." j( ~A~) .., I: D "::: i
t.D Gi'vi.- 1-\
r::\
flC-I)® \hi
(Ji) A f\[-Bf"L~l ~l)C
(0
L So
r....
® AASr-J
E
17. Given: L.B and L.D are right angles.
AE bisects BD
Prove: MBC == AEDC
A
Reasons
Statements
CD L ~ c... ",c( LV ~rL -r<J \r-.-r
/"" , ~) @
C0 L-b::::-·_Y
®
1:-;~::- ~
'J~
-"
DC ®
LS
.'J
A£
C0
-Be)
0
C\.\ \.
Q)
kt ~!of ~~~+ b,':)((,,(o'-
bisuts
"
Gi v~""
/ c
r 'a\",
. ).,,'~~. ,-...
','
6) L tcA ~iLDc-~®
® vu-il....~
@ 4A6c.~~ Lt)C
C€)
........
4JC.. .::::...
.........
"-.rC ::-:
A-5A:
B
18. Given: BC=.DC,AC=.EC
Prove: MBC == llEDC
D
Statements (i)
Reasons
K Jt:~iK ;- fc (Sl
N
StA ~L'PC
0)
1:1 Aelc;::L\ :- , C
State the third congruence that must be given to prove that .6.JRM= .6.DFB
using the indicated postulate.
19.
-
GIVEN:JR;;;: DF,JM;;;: DB,~;;;: ~
Use the SSS Congrucnce Postulate,
r.e
R
F
,-1
J? J.if :=
""vst
20. LJ ::::{
- L. yn
b~ +~
GIVEN:JR;;;:DF,JM;;;:DB.
t '\vtv'~ '-
1------,,..----..:..::;..0;.:..;...;;."'""1
21. e.i:+kr',
~ ~ FD
I
,
;;;:~
Use t he SAS
C'
"
P
I atc.
,"ongrllcnce
ostu
__
GIVEN: RAt;;;: FB. e J is a right angle and
e J;;;: e D,
0'-
-
Usc the HL Congruence Theorem, State the third congruence that is needed to prove that .6. ABC:.::: b,XYZ
using the given postulate or theorem.
+ ,;-;
22. C!I
Ire ~ x~
~;;
0 r-
!( L Y
Yl
GIVEN: LA == LX. LB == LY,~ == _'!_
Usc the AAS Congruence Theorem.
I
GIVEN: LA ;;;;; LX, AB ;;;;; XY,
;;;;; _?_
Use the ASA Congruence Postulate.
LA t;:! LX
GIVEN: BC;;;;; rl. L C Ll, _'1_ == ~
Use the AAS Congruence Theorem.
23 . .1-0
D
24. NOTE: Review Proof Packets as well
A
X
B
C
2
© Copyright 2026 Paperzz