STATIONA1 ACROSS 2.Linesegmentjoiningthemidpointofonesideofatriangletothe oppositevertex. 4.Parallelogramwith4equalanglesand4equalsides. 5.Quadrilateralwith1pairofparallelsides. 8.Quadrilateralwith4sidesofequallength. 9.Amediandividesatriangle’sareainthis. 10.Intersectionpointofthealtitudesofatriangle. 11.Quadrilateralwith2pairsofadjacent,equalsides. 12.Intersectionpointoftheperpendicularbisectorsofatriangle. STATIONN DOWN 1.Intersectionpointofthemediansofatriangle. 3.Shapecreatedbyjoiningthemidsegmentsofaquadrilateral. 6.Linethatcutsasegmentinhalf. 7.Linesegmentjoiningatriangle’svertextotheoppositesideatarightangle. 8.Trianglecontaininga90°angle. STATIONA2 AlinesegmentstartsatA(-7,11)andendsat pointB.Itsmidpointisat(17,38). DeterminethecoordinatesofB. STATIONL Adartboardhasadiameterof18inches.The bullseye(centre)isatcoordinates(0,0). a) Determineanequationrepresentingthe outeredgeofthedartboard. b) IfNatalie’sdartlandsatcoordinates(6,7),is itonthedartboard? STATIONY Fillintheblanks. a)Aparallelogramiscreatedfromthelinesshown. b) Arectangleiscreatedfromthelinesshown. STATIONT ThediagrambelowshowsΔABCwhereA(-3,-1), B(2,3)andC(7,1). Algebraicallydeterminetheequationofthe altitudefromA. STATIONI Brandonisrowinghisboatwhenitspringsa leakatposition(-5,2).Theshorelinefollows theequation y = − 1 x + 7 .IfBrandoncanswim 2 amaximumof6km,canhemakeittoshore withouthelp?(Eachunitrepresents1km.) STATIONC AtrianglehasverticesA(-2,0),B(4,-8)and C(7,2).Rowanfoundthecoordinatesofthe centroidbytakingtheaverageofthex-values andtheaverageofthey-values.Algebraically verifythatthismethodworkscorrectlyby findingtheintersectionpointoftwoofthe medians.
© Copyright 2026 Paperzz