Unit 2 Review Stations

STATIONA1
ACROSS
2.Linesegmentjoiningthemidpointofonesideofatriangletothe
oppositevertex.
4.Parallelogramwith4equalanglesand4equalsides.
5.Quadrilateralwith1pairofparallelsides.
8.Quadrilateralwith4sidesofequallength.
9.Amediandividesatriangle’sareainthis.
10.Intersectionpointofthealtitudesofatriangle.
11.Quadrilateralwith2pairsofadjacent,equalsides.
12.Intersectionpointoftheperpendicularbisectorsofatriangle.
STATIONN
DOWN
1.Intersectionpointofthemediansofatriangle.
3.Shapecreatedbyjoiningthemidsegmentsofaquadrilateral.
6.Linethatcutsasegmentinhalf.
7.Linesegmentjoiningatriangle’svertextotheoppositesideatarightangle.
8.Trianglecontaininga90°angle.
STATIONA2
AlinesegmentstartsatA(-7,11)andendsat
pointB.Itsmidpointisat(17,38).
DeterminethecoordinatesofB.
STATIONL
Adartboardhasadiameterof18inches.The
bullseye(centre)isatcoordinates(0,0).
a) Determineanequationrepresentingthe
outeredgeofthedartboard.
b) IfNatalie’sdartlandsatcoordinates(6,7),is
itonthedartboard?
STATIONY
Fillintheblanks.
a)Aparallelogramiscreatedfromthelinesshown.
b) Arectangleiscreatedfromthelinesshown.
STATIONT
ThediagrambelowshowsΔABCwhereA(-3,-1),
B(2,3)andC(7,1).
Algebraicallydeterminetheequationofthe
altitudefromA.
STATIONI
Brandonisrowinghisboatwhenitspringsa
leakatposition(-5,2).Theshorelinefollows
theequation y = − 1 x + 7 .IfBrandoncanswim
2
amaximumof6km,canhemakeittoshore
withouthelp?(Eachunitrepresents1km.)
STATIONC
AtrianglehasverticesA(-2,0),B(4,-8)and
C(7,2).Rowanfoundthecoordinatesofthe
centroidbytakingtheaverageofthex-values
andtheaverageofthey-values.Algebraically
verifythatthismethodworkscorrectlyby
findingtheintersectionpointoftwoofthe
medians.