Supporting Fig. 6. Amino acid sequence alignment of TERTs and PLEs. Included are the TERT sequences (cyan), telomere-associated EN-deficient PLEs (red), and the EN-containing PLEs from three major PLE groups shown in Fig. 4: Neptune (green), Nematis (magenta), and Penelope/Poseidon (blue). Numbering on the top corresponds to the position in the entire alignment, and numbering on the left – to amino acids within each sequence. The amino acid residues are shaded in Vector NTI (InforMax, Inc.) as follows: identical, red letters / yellow background; block of similar, blue letters / light blue background; conservative, black letters / green background; weakly similar, green letters / light green background. Previously described sequence motifs in TERTs are marked on the top (Xia et al., Mol. Cell. Biol. 20:51965207; Huard et al., Nucleic Acids Res. 31:4059-4070). GIY-YIG EN motifs A-E are designated as in Kowalski et al., Nucleic Acids Res. 27:2115-2125. The GenBank identifier (GI) numbers for TERT amino acid sequences are as follows: Homo sapiens (4507439), Mus musculus (6678291), Gallus gallus (45686257), Xenopus laevis (12003360), Tetraodon nigroviridis (47229475), Aspergillus nidulans (40740771), Kluyveromyces lactis (50306115), Saccharomyces cerevisiae (6323350), Magnaporthe grisea (38110208), Candida albicans (6716754), Schizosaccharomyces pombe (2340169), Tetrahymena thermophila (3335167), Euplotes aediculatus (2072336), Paramecium caudatum (11463858), Arabidopsis thaliana (9755737), Oryza sativa (13625302), Encephalitozoon cuniculi (19173151), Giardia lamblia (9049518). Accession numbers for PLE sequences are as follows: Danio rerio Nep1 (NW_634120.1), D. rerio Nep2 (NW_634335.1), Caenorhabditis briggsae (CAAC01000421.1), Branchiostoma floridae (BW883725.1), Ciona intestinalis (AABS01001109.1), Perere-10 from Schistosoma mansoni (BN000801), Cercyon from S. mansoni (BK000685.1), Poseidon from Fugu rubripes (CAAB01007635.1), and Penelope from Drosophila virilis (U49102). Sequences of Athena elements from Adineta vaga and Philodina roseola were obtained in this study (GenBank accession Nos. EF485018EF485020). All other PLEs were assembled from trace archives, and consensus sequences were deposited in Repbase Update (see ref. 17 for a complete list). Athena a. AvM AAAAATTTAAAAAAAAACTACATAAAACAAAACAACTCTTTTTTTTTCTTTTCTATCTCAAACATTTTAT CCTTTAAAGGGTTTCA TTAAATTTAAATTTAAAAAAGTTCTGATGAAGTCAAGTCTTAACTTGACAGAAAC TTTTTTGT TCTTTGATAAATCGGTTATTTCTTTCGAACAGGAAATAACCAACTGCTTTCTTTTTCGTATAGTTGAGTATTTAGTTTGTCGTTAGTTAGCTATTTTATATAGAGTCGTAAGA [.................................................................CGCGAAAAATGAATCCAGTATTACGAAAGGATTTCACGCTCCAAAT] [.................................................................aataatctccttttcttttgaattctaatcttttctatatattaca] [.................................................................aaaaacctccaaaattcagacactttcctgacttttcagacaatct] AvM <-------------------------------------------------------------|-------------------> flanking DNA b. AvO CACCCACACCCACCACACCCACACCCACCCACACCCACACCCACACCCACACCCACACCCACCCACCCACACCCTCAAGATGTACTTGTGCCAGAAGAAAAGCCTGGCTATGT GGATCCCAAGTGGGGACTGGTTCTATAGTAACCAAGATCCGCAAGAGAACCAGTCAATAGCAGCATTTGCGCAAGCAAATAGCAGGTCTACCAATAAATGGGTAGAACGGACG AAACGTCCGACACCTTATGAGAGGCCGAA GGGCCTGATCTGAATCAGATCAGAGAAGAGGAGAGACGTCGTGAGCGTCTCGAAAAGGAAAGGAGTTCGAAGTCAGCA AATTCCTTTTCCTTAAAAAAAAAATTTTAATTGGAAAAAATTCCCCAATTAATTTTTTTTAACCTTTTAAGG))4 CTTTTCTTTTCTCTTATTATTAGTTTTTC N1] ACCCATCTTCTAAAAATTATGAAATCCATATTTTACTTAG) AAAAGGA GAAAAAGA GGAAAAG TAAAGAAG [............................((T (T AAAAGGAACCAATTCCTTTTCCTTAAAAAAAAAATTTTAATTGGAAAAAATTCCCCAATTAATTTTTTTTAACCTTTTAAGG))2 TGTTGAATATATTCACGATATTTTTGTCG O2] GAAAAAGACATCTTCTAAAAATTATGAAATCCATATTTTACTTAG) GGAAAAG TAAAGAAG [............................((T (T [............................(((TTTAAAGGGAAAAAAGGGAAAAAAAAAGGGAAACCCAAATTTCCCTTTTTTCCCTTTAAAAAAAAAAAAAAATTTTTTAAATTTGGGAAAAAAAAATTTCCCCCCAAATTTAAATTTTTTTTTTTTAAACCCTTTTTTAAAGGG)))3 AAACGATCAACCAACTATTTCTGATCATC O1] ACTTCGAAAGTGCCAACACCACCTCCGAACAATGACCGGCCGTCAACGTCAGCCGACGCTGGCCTGCCGCAGTTGGAGAAAAGTGAACGAGTTCGAAAGAAGCTCGCATTTTG GAAGGCACAAAGGGAGATGAGAAAAACAGCGAATAAAGTCGCTGCAAATCCACCCCGACAAGCTCCACCACCTCGTCCTAAAGCACCAGTACCACCTGCTCCGCTTGTTTCAC CCCCAGAGATGAGTCGACGACAGCCTGTCGAACAGACTGTACAACCTGGTAATCAGATTGTTTCACCGGTGCCCGGTCACCAACCGGCGCCTGTAGCAGCATCAACACCAGAA TCGGTCCTTTCAGATCGAGCTAATTCGGTGTTAGGTCCACCAAATGATTCGGTAGTGTCTTTCGGTGATTTCTTACCTGTTGACATCAACGACATCAACATTCATGATCTTCT CCTCAACGAAGATTAAAGGTGGTCGCCTTGGTGCTCGTTCTTCCCGTCGTCGTGCTTCCTCAGCTCCTCCTTCTTTCTTCTTTTTTGAAGTTTTTTGTAGTAGTTGTTCCATC 1|_____> 2|_____> TT TATTCTGAACTAAA AA TGTTGTTTTTTCCTGAAGATCTTTATTTTTTACAATAAAGTGAAACCGGTCGAAAACAAACAATTTCTTCTTT TTGTTAAAGTTTTTTGTTCTTCTAGA 3|____> TT CAGGGTTGTTTCTTCCAACTTCTTCTTCTTCTTCAACCACACCCACA AAAAAAAATTTAAAAAAAAAAGCAACTACAAGTCTTAGCTAGTTTTGTTTCACTAGCTTCCTTCGACACTAAGACATT CA ATCTTCACAACTCGTCGTTAGTGCACAACTGCCGCCGCGTTCAAGAACAACCGTCTTAAACAAGTGTCGATATCCTACAATAAATTTGGG..................(((OOORRRFFFsss)))................................................... .........TTTGGGAAATCGTATAATATATAGACAACCTCA((TTAAGGAAAAGGAAAAAAGGAACCAATTCCTTTTCCTTAAAAAAAAAATTTTAATTGGAAAAAATTCCCCAATTAATTTTTTTTAACCTTTTAAGG))4 AAGAGTCCTTCAAATATTATGTGGTAAA. M1 (TAGAAGAAAGACATCTTCTAAAAATTATGAAATCCATATTTTACTTAG) ........ ........................((TTAAGGAAAAGGAAAAAAGGAACCAATTCCTTTTCCTTAAAAAAAAAATTTTAATTGGAAAAAATTCCCCAATTAATTTTTTTTAACCTTTTAAGG))10TGTTGAATATATTCACGATATTTTTGTC O3] [....... (TAGAAGAAAGACATCTTCTAAAAATTATGAAATCCATATTTTACTTAG) . . . . . .................................(((TTTAAAGGGAAAAAAGGGAAAAAAAAAGGGAAACCCAAATTTCCCTTTTTTCCCTTTAAAAAAAAAAAAAAATTTTTTAAATTTGGGAAAAAAAAATTTCCCCCCAAATTTAAATTTTTTTTTTTTAAACCCTTTTTTAAAGGG)))8 AAACGATCAACCAACTATTTCTGATCAT O4] [. AvO <--------------------------------------------------------------------------|----------------------------> AvN c. AvN |_____> CCCTTATTACAACTTACCAAGAGACATGCGAATGATAAACGATCAACCAACTATTTCTGATCATCCAAAACAGTCGAAGAAACGTAAACGAGATCTATCGCAACAGAATCTTAAATTTGGG ..................................................................................................................................................................(((OOORRRFFFsss)))............................................................................................................................................................... CAATATATAAGCAAACCATGAATGAACTATAAAGAGTTGCAATGTCAGCAACTATATAATAACCGAACCCAGCCGTCTGAAGAGTCCTTTAGCAGGGACGAAATCATGATAAC GGTAGCTATACTCACCCCAACTATACGGGTACCTATATATCCTTGAAAAATTCCTTGTGAATTTACTTGGATAAAATTTAGGTTATACACTTTGTTTATGATCTTAGGATCAT CCGAACAAGTGTTGCTATTAAAGCCGTCTGAAGAGTCCTTTAGCAGGGACGAAATCATGATAACGGTAGCTATACTCACCCCAACTATACGGGTACCTATATATCCTTGAAAA ATTCCTTGTGAATTTACTTGGATAAAATTTAGGTTATACACTTTGTTTATGATCTTAGGATCATCCGAACAAGTGTTGCTATTAAAGCCGTCTGAAGAGTCCTTTAGCAGGGA CGAAATCATGATAACGGTAGCTATACTCACCCACACCCACACCCATCTGATGAGAACCGTAGCGGGTTCGAAACGCGTCATGGCTGCTGGAACACCCACACCCACCCGCACCC d. PrR and PrR* \ CAGTAATTTGAAAAAAT--CGTTGCTTGTATTCTAATTTAAGTT---CAAAACTTGGAAGTCAT----ACTTCTTTTGTTTGAAA--TTAAATTTA--TTATGCAACAAAAAA [AGTAACTCGAAAAAATATCGTTGCTTGTATAGTAATTTGTTTTTTTCAAAAAATTGGAGTGAT-ATAACTTCGATTGCTTGAAAAATCAAATTT---TGATGCAACAAAAAA [GATGATCTCCCATGAAA-CATTTCCTCTTTTTCTATTCACCTGGCTTGTAAAATTGCAGTTGTCACAACTTTCATTAATTGAAAT-TCAAATACAGATGCTGCAACCAAAAA * * * * * * ** * * * * *** * ** * * *** * * *** ** ****** * **** * ****** ***** TTGAGCTACCTGATGAGGTCCTGGTAAATCAGGCCGAAACGCGTCGTAGCCGATTCTTTCTAATTTACTCACCCCAGTAATTTGAAAAAATCGTTGCTTGTATTCTAAT C.2 TAAAGCTACCTGATGAGGTCCTCATAA-CGAGGCCGAAACGCGTCGTAGCGTATT-TCTTTGATTTACTCACCCtcaagaacaaaacatccgacatcgacaacaagtg] C.1 TTATGCTACCTGATGAGGCCTTGG-AATTTAGACCGAAACGCGTCGTGGTAATTAATCTTGGAT--ACTCACCCTCCTCACCCTCtcgtctcgatacacaggcaatag] PrR * ************** * * ** ** ************** * * * * ** ******** PrR <--------------------------------------------------------------------|-------------------> flanking DNA Coprina e. Cc1 CCCCCAAAGGGCCCTTTCGCCTTCGAAAAAAGTCTCGC TTAAATTTAAAAAAGAAGTCGAAAGCGGACCAGGTTGTTTCGACAACCCGCTTGAC CCCTTTTAGAAAAGAAAGCACAGGTCCTGAAGAGACTT TTCGCTCGACTTTTTTCTCCACCCACCCTAACCCTAACCCTAACCCTAACCCTAAgggacggagcaagtggattcgagagtgagggaacgaatatgagatcgggatttgaaa [.......................ACCCTAACCCTAACCCTAACCCTAACCCTcacgagacaccctaactgcattaggcctatagagaaactgccctagagcagtatcgct] [.......................ACCCTAACCCTAACCCTAACCCttgatcaaggtttcgaggaagaggatgaactccgcccgtagtgactggccgtcgatgtccacgat] [.......................ACCCTAACCCTAAgtccgagaagccgtttcaagggcgatggtcgcatgcatcgctgtgggatacaatctccggaagaagggcgaata] [.......................ACCCTAACCCTAAgcgtttcacctgtatcccacaagcatttactcaccgtcgtcgtccacagtcacctgtcacgatgtctgccgcca] Cc1 <-------------------------------|------------------------------------------------------> flanking DNA f. Pc1 TTCCCAAAGGGCCCGCGACACAACAGTGTCGGCTGCCTTCGGTTTTCCTG TTAAATTTAAATTTAAATTTCCCAGTAGGAAACCGCTGATGAGTCTTCACGACGAAAGCT CTTCGGGCCTGGCGGTTGCAAGGGGT AATTTGGGCCCGCCCAAGACACTACTCGCCGTGC TGAAGCATTCCGCGCTCGCCGCTCACTACGCTCGCGTCTCGCGCCCCCCAAACCCTAATCAAATCGAGTAAGCACTCTTCACCA [................................................AAACCCTAAACCCTAAACCCTAAACCCTAAtacccgcccttgtacgcgtaacttacacttgg] [................................................AAACCCTAAACCCTAAACCCaggctgtaccaaggctgtgtcacgaggctgcatcatcaggct] [................................................AAACCCTAAACCCTAAACCCgctgtggagtatgcgcatgaacctgggccttcttgacgtcct] [................................................AAACCCTAAACCCTAAAaaccgaccgggctagacgtcgtcggagtcgagcgtcccgctctct] [................................................AAACCCTAAACCCTAAgcgcagggttggatcttttcatcacggaagaccttacgctcaaacc] [................................................AAACCCTAAACCCTcagacattgcccggatcaccggtctgccttgcaaccggtcccccggat] [..........AT....................................AAACCCTAAACCCTcagtacatgtgagtgctatacaagcatctcggcatcactactggtctc] [......................................T.........AAACCCTAAACCCcgatgcgttcacctcaatctgccgtcagaattccaccttgatagcggga] [................................................AAACCCTAAAgcggatattcaaactcgagccggcagatctgctcaagaaggtaggtcgtgta] [A..................A................T...........AAACCCTAAggtaccagtaaaaaaccagtataatggctaagctcacggaagattcgggagat] Pc1 <----------------------------------------------------|---------------------------------> flanking DNA g. Pc2 TTCCCAAAGGGCCCGCGGCCCCCCAAAGGCCCCACCTTCACTTTCGTCCCTTGCCTC TTAAATTTAAATTTAAAAAACTAGGGACTCTGAGTGCTGATGAGGCATCGCCGAAAGGTT GAGTTTGAGCCCTAGGCGT AATTTGGGTCCTCTCGCGCCACTTCGCTGCCCCCCGCCTTCGCAGGACTCGGCCTCGGCGAATCTCGTC CCTCCACCTCTTTCACCCTTACTAAACCCTAACAAAGGAGTAAGCACCA [.....................TAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAGCCCTAAAGCCTAAAtattcattagcgtctccctcacaggcctaaaccccc] [.....................TAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCtgcatcaatgtcgttcacgaactcaccccggtg] [.....................TAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCTAAACCCGTAAA] Pc2 <--------------------------|-----------------------------------------------------------> flanking DNA Supporting Figure 7. Nucleotide sequences of the Athena and Coprina 5' and 3’ extremities. PLE sequences are in color uppercase letters, and the adjacent flanking host DNA is in black lowercase. In each case, a continuous sequence is shown on several lines; if its segment is included into a multiple sequence alignment, other members of the alignment are shown underneath in square brackets. (a) The 3' ends of three fosmid-borne copies of Athena-AvM. The italicized sequence is the 5' UTR of the full-length downstream AvM copy; the junction below is to a 5' truncated AvM copy; two other junctions are to unidentified host DNA. (b) Complex structure of Athena-AvO noncoding regions, based on eight AvO copies from telomeres M1, N1, and O1-O4 (Supporting Table 1). One of the genomic copies (M1) shows a pseudo-LTR structure (6), i.e. the segment shown immediately adjacent to telomeric repeats, upstream of the ORFs, is found again downstream of the ORFs, representing an extended 3' UTR region. Thus, it constitutes both the 3' UTR and a functional promoter for the downstream copy, as described for HeT-A in Drosophila (14). RNA start sites 1-3, determined by 5' RACE, are italicized and shown by arrows. AvO can be terminated by addition of 2-10 copies of a 48-bp repeat at two locations within the 3' UTR, where it is joined to a variably 5' truncated end of AvN (blue). In the M1 copy, the 3' UTR extends further, and the element ends in a long stretch of telomeric repeats, two units of which are present at the tandem junction (underlined), as is also the case for Coprina elements (e-f). (c) Noncoding regions of Athena-AvN. In the 5' UTR of AvN, the arrow indicates the position of the RNA start site determined by 5' RACE, and the ATG codon of ORF1 is shown in bold italics. The 3' end of AvN features two complete and one partial copy of a 177-bp tandem repeat, with each unit ending in a telomeric repeat (underlined). (d) The 3' UTR of a cosmid-borne full-length PrR copy (also found in the telomere-enriched plasmid mini-library) is aligned with telomeric groups C1 and C2 (Supporting Table 1). In the telomeric clones, the depicted segment (180 bp in C1, and 174 bp in C2 and K) exists as a tandem repeat, each unit ending in a telomeric repeat (underlined). The telomeric tail attachment site (\) in group K, which ends in a tandem repeat identical to C2, is shown on the top. For C2, the uppercase sequence following the underlined telomeric repeat represents the beginning of the next tandem repeat unit. The tandem repeats could originate from an as yet unidentified Athena variant, tentatively designated PrR* (Supporting Table 1), or could be mobilized in trans by PrR-encoded RT interacting with homologous regions (asterisks). (e-g) For each Coprina family, the 3’ flanking sequences of several copies adjacent to telomeric repeats (underlined) are presented; for Pc1 and Pc2, the italicized uppercase 3’ flanking sequence (with the ATG codon in bold italics) at the same time represents the 5’ terminal sequence of the adjacent downstream copy of the same element in a tandem arrangement (pseudo-LTR). Putative TATA boxes, initiator motifs, and poly(A) signals are underlined. DAPI Red Merged Interphase Supporting Fig. 8. Fluorescent in situ hybridization (FISH) of the Athenacontaining cosmids, labeled with the red fluorophore Alexa 568-dUTP, to P. roseola embryo nuclei. Two mitotic nuclei are shown, with arrows pointing to chromosome ends, fluorescent signals, or both. Smaller arrows point at the dot chromosome. Left to right: DAPI-stained DNA; Red fluorescent signals; Merged images. Also shown are two interphase nuclei with fluorescent signals concentrated on the nuclear periphery, as often observed for telomeres in other organisms. Scale bar, 1 µm. Ts n TE R eido pe lo ne Pe al Vertebrate TERTs s RT Pos ng te lia TE N Fu un t ep e Ci Osir is A Coprina T nt Pla Athen a Ts ER B mori 97 B 98 99 A a e g y p t iA Penelope 87 61 Pe n e lo p e D v 28 Cerc y onS m 56 20 H y d r a Po s 79 55 C io n a in t 99 92 Poseidon B f lo r id a e 97 58 99 Po s e id o n F r A a e g y p t iB 100 84 100 A a e g y p t iE 99 13 A a e g y p t iC 100 85 A a e g y p t iD N e m a to s te l 99 94 67 D r e r io N e p 2 97 42 99 69 D r e r io N e p 1 A th e n a A v M 98 100 A th e n a A v O 100 100 99 Neptune X tr o p N e p t 87 A t h e n a Pr R Athena 71 95 A th e n a A v N 99 82 100 A t h e n a Pr B S e la g in e l1 81 100 S e la g in e l2 35 Ph a e o d a c t i 61 31 Ph y s a r u m 30 C o p r in a Pc 2 100 98 Coprina C o p r in a Pc 1 72 73 C o p r in a C c 1 E c u n ic u li T e tr a h y m e n 52 69 100 83 95 68 Pa r a m e c iu m Eu p lo t e s a 88 80 Ciliate TERTs A r a b id o p s i 97 91 Plant TERTs O r y z a s a ti P t r ic o r n u 59 G a llu s g a l 98 48 95 80 26 X e n o p u s la 45 H o m o s a p ie 96 Mus mus c ul Vertebrate TERTs 97 T e tr a o d o n 99 58 45 91 A s p e r g illu M a g n a p o r th 57 Sc h pombe 48 99 75 C c in e r e a P c hry s os p Fungal TERTs G ia r d ia T E 1 Supporting Fig. 9. Analysis of the TERT-PLE dataset by different methods. (A) NeighborNet estimate of the data structure of the TERT-PLE dataset. Uncorrected p-distances were used to construct a NeighborNet agglomerate network graph in SPLITSTREE 4.6 (36). Complete names of individual elements and taxa are listed in Supporting Fig. 6. Larger groupings are indicated on the perimeter; color-coding is the same as in Fig. 4. (B) Clade support values in the PLE-TERT phylogenetic tree. Numbers above the branches were obtained by maximum likelihood analysis (rtREV+I+G8+F model, with rate heterogeneity parameters obtained from PROTTEST) and represent approximate bootstrap support (1000 replicates) for reconstructed edges computed from maximum likelihood scores in TREEFINDER (39; www.treefinder.de) by applying to all local rearrangements of tree topology around an edge the Shimodaira-Hasegawa (SH) test with RELL approximation (Shimodaira and Hasegawa, MBE 16:1114-1116), where the edges are assigned 100 percent minus the worst SH p-value obtained. Numbers below the branches were obtained by neighbor-joining analysis in MEGA 3.1 (38), with 100 bootstrap replications, pairwise deletion, and JTT substitution model with gamma distributed rates and gamma parameter estimated as above. Supporting Table 1. Telomeres of A. vaga and P. roseola. Each telomere has a letter designation and is represented by a group of plasmid clones sharing a unique sequence at the junction between telomeric repeats and the subtelomeric region and ending with a HincII halfsite, with 1-34 clones in each group. The exact length of the telomeric repeat tail, where known, is shown in parentheses; in other cases, BigDyeTerminator mix failed to read through the entire GT-rich strand and there is a gap between subtelomeric and telomeric sequences. PrR* is derived from an as yet unknown Athena variant and has 75% similarity to the 3' UTR of Athena-PrR (Supporting Fig. 7). The last three P. roseola clones were not capped by telomeric repeats and do not have a letter designation. A. vaga Telomere A B C D1 D2 E F G H I J K L M1 M2 N1 N2 O1 O2 O3 P1 P2 Q R S T1 T2 U V W X Y Z AA AB AC AD AE AF AG AH AJ AK AL AM Accession No. (number of clones) EF484951 (14) EF484952 (34) EF484953 (2) EF484954 (3) EF484955 (3) EF484956 (1) EF484957 (1) EF484958 (5) EF484959 (8) EF484960 (7) EF484961 (2) EF484962 (1) EF484963 (3) EF484964 (3) EF484965 (1) EF484966 (2) EF484967 (1) EF484968 (1) EF484969 (1) EF484970 (1) EF484971 (1) EF484972 (1) EF484973 (1) EF484974 (4) EF484975 (1) EF484976 (1) EF484977 (1) EF484978 (2) EF484979 (2) EF484980 (1) EF484981 (1) EF484982 (2) EF484983 (2) EF484984 (1) EF484985 (1) EF484986 (1) EF484987 (1) EF484988 (1) EF484989 (1) EF484990 (1) EF484991 (1) EF484992 (1) EF484993 (1) EF484994 (2) EF484995 (1) Insert length 1125+tail(320/95) 1142+tail(309) 870+tail 2011+tail(147) 1925+tail 179+tail >5756+tail 2217+tail 802+tail 1547+tail 871+tail 4309+tail 6944+tail 2356+tail 41+tail(>650) 1495+tail 1666+tail 1756+tail 571+tail 641+tail >1028+tail 387+tail 3234+tail 213+tail(105) 400+tail 745+tail >750+tail 323+tail(108) 3128+tail 929+tail 79+tail(307) 1293+tail(111) 273+tail(186) >746+tail 41+tail(75) 774+tail(38) 351+tail(41) 296+tail(39) 172+tail(51) 408+tail(26) 8+tail(450) 230+tail(107)+35 17+tail(170) >920+tail(52) 697+tail(54) P. roseola Notes Telomere orf frag. orf frag. orf frag. Ath-AvM Ath-AvM AvO+AvN Ath-AvN AvO+AvN Ath-AvO AvO+AvN fosmid Hobo AvN orf A B C1 Accession No. (number of clones) EF484996 (1) EF484997 (1) EF484998 (4) Insert length Notes >655+tail 1003+tail(197) >1244+tail orf frag. C2 EF484999 (1) >617+tail D E1 E2 E3 E4 F G EF485000 (1) EF485001 (2) EF485002 (3) EF485003 (1) EF485004 (5) EF485005 (1) EF485006 (4) H I J K EF485007 (3) EF485008 (2) EF485009 (1) EF485010 (6) 116+tail(194) 342+tail 275+tail 270+tail 37+tail 187+tail 1895+tail 609 (no tail) 319+tail(57) >688+tail >562+tail >1037+tail L M N P PR_A_IV_4 PR_A_V_1 PR_A_III_3 EF485011 (1) EF485012 (1) EF485013 (1) EF485014 (1) EF485015 (1) EF485016 (1) EF485017 (1) 202+tail(135) >582+tail 27+tail >1200+tail 2442 532 981 Ath-PrR*, 3x repeat Ath-PrR*, 4x repeat Ath-PrT Ath-PrR*, 4x repeat rDNA Gag Ath-PrR Ath-PrR Ath-PrT Coprinus cinereus Telomere C. cinereus telomeric reads (ti) Mate-pairs (ti) Matching contig Cc1.1 211617341, 211634836, 215117731 215319947, 215176391, 211620966 211633064 214363379, 214342904 214358209, 214358160 216030683, 216586163, 216037555 216029176, 215833309, 215836918 216687798, 216676781, 223023857 222955659, 222765563, 216710384 216700288, 223037572 228082942, 228093429 211340407, 211344234, 210714591 215176297, 215318579, 211623374 211603286, 211627562, 211634893 214351121, 214350504, 214353697 227995062, 227969413, 228005097 223362976 216620368, 216626044, 215838354 215829090, 216622736, 216586938 215824626, 215840535, 222846619 222764599, 222767513, 216694123 223132751, 223053585, 223049192 223123446, 231270591, 231277900 215823695, 227975865 210689220, 210721332 210724451, 211618846 214354183, 227979755, 228073284 228082597, 228081102, 228066964 216621583, 215820272, 215828043 216609631, 216006074, 215820544 222839591, 222846221, 216690287 223128800, 216686309, 222929011 216714124, 222840840, 231335439 231362233, 231715106, 231353020 210687528, 210702594, 210725581 210742826, 210711705, 210715524 214799179, 214362998, 228087187 227989181, 228078631, 231882819 231887998 222935495 215175505 214345276, 214347995, 214366412 214798212, 228000347, 228058717 227979895, 227980240, 228086150 228059942, 228089872, 228064129 228081423, 228062916, 228058812 228063230, 223356523 216612408, 215833906, 216582075 216607484, 223026800, 216040085 216685990, 216032989, 222854168 222853434, 222768978, 223028727 222939908, 216680981, 222766209 222919662, 223198426 209018915, 209020288, 210685867 211633907, 215118976, 210712384 210714621, 210718438, 215314473 211628780, 215177798, 211634203 214347974, 228091040, 227990723 228002046, 223363166 216002258, 216001090, 215819308 216031234, 223028244, 216692637 216709171, 222837729, 231375549 211623428, 211628650, 215173869 215176088, 215172560, 211624860 211636879 214359562, 214339078 214362032, 214361980 216036855, 216582332, 216031475 216025259, 215837226, 215830732 216683983, 216672952, 223020041 222959482, 222769387, 216714204 216704093, 223043765 228086752, 228089611 211344234, 211340407, 210710691 215110118, 215172351, 211617189 211607136, 211633748, 211631085 214357294, 214354320, 214347515 227988992, 227973232, 228001277 223359163 216626460, 216622237, 215832163 215825169, 216626545, 216583036 215828445, 215844370, 222852816 222770787, 222773578, 216698045 223126572, 223047386, 223045283 223119624, 231276768, 231271706 215829872, 222756463 210683036, 210725264 210720624, 211622665 214347999, 227983579, 228077116 228086402, 228084918, 228060776 216627679, 215824095, 215824135 216613452, 216009906, 215824349 222843427, 222850037, 216694111 223132598, 216680126, 222932834 216717964, 222836904, 231329249 231366054, 231718935, 231356835 210683613, 210708791, 210719402 210749001, 210715524, 210711705 214792988, 214359174, 228081104 227995360, 228084829, 231886637 231884074 222941677 215319332 214341465, 214351822, 214362512 214794255, 228004182, 228062542 227985995, 227984067, 228082330 228066127, 228093671, 228057952 228077596, 228059098, 228064934 228067048, 223362699 216616220, 215830104, 216588269 216603566, 223030696, 216033906 216679825, 216039089, 222857989 222847253, 222302754, 223032546 222935995, 216684803, 222770019 222923481, 223202239 209012841, 209014193, 210679674 211627724, 215172752, 210716297 210718438, 210714621, 215170618 211634977, 215171719, 211628018 214351880, 228097115, 227996899 227998207, 223356984 216008369, 216004914, 215813224 216035066, 223024370, 216698819 216712992, 222841561, 231369376 cont1.407_scaffold82 Insert length 40 kb cont1.350_scaffold31 10 kb cont1.350_scaffold31 5 kb cont1.167_scaffold7 40 kb cont1.367_scaffold48 10 kb cont1.427_scaffold102 5 kb cont1.427_scaffold102 5 kb cont1.309_scaffold21 40 kb cont1.309_scaffold21 10 kb cont1.309_scaffold21 5 kb cont1.318_scaffold22 40 kb cont1.319_scaffold22 10 kb cont1.249_scaffold14 cont1.298_scaffold19 cont1.297_scaffold19 5 kb 40 kb 10 kb cont1.397_scaffold73 (Cc1) 5 kb cont1.327_scaffold25 40 kb cont1.327_scaffold25 cont1.319_scaffold22 cont1.397_scaffold73 (Cc1) 10 kb Cc1.2 Cc1.3 Cc1.4a Cc1.4b Cc1.5a Cc1.5b 5 kb Phanerochaete chrysosporium Telomere Pc1.1 Pc1.2 Pc1.3 Pc1.4 Pc2.1 Pc2.2 Pc2.3 Pc2.4 P. chrysosporium telomeric reads (ti) 589120750 258451408,258473550 258418123 589253044,589270902 589432948,589076795 589127246 258420173,589280832 589122938,589209977 589074076,589277774 589326027,589325450 258420836,589325960 258462222,258666734 258652269,258459744 258646300,258646301 258451617 589220586,589243138 589240126,589278046 589133565,258470632 258652333 258518952,258542250 589205271,589452989 589453766,589218483 258547099,589386555 589337549,589211372 258637939,258459048 258614064,258648532 258648108,258635864 258600185,258495265 258518952,589205271 Mate-pairs (ti) 589122286 258451407,258473551 258418122 589253140,589264758 589432852,589076699 589129358 258420172,589279680 589121402,589206233 589071388,589269134 589330593,589330012 258420835,589330524 258462221,258666735 258652268,258459745 258646298,258646299 258451616 589219050,589253602 589242526,589269406 589137693,258470633 258652332 258518951,258542249 589207863,589454909 589451078,589217235 258547098,589381221 589337931,589211276 258637938,258459049 258614063,258648531 258648107,258635863 258600186,258495264 258518951,589207863 Matching contigs Assembly I White_Rot564* Matching contigs Assembly II Scaffold_23*,24* White_Rot564* White_Rot539 Scaffold_24* Scaffold_8* White_Rot368 White_Rot564* Scaffold_24*,23* White_Rot820* Scaffold_27*,2* White_Rot820* Scaffold_2*,27* White_Rot820* Scaffold_27* Scaffold_26 No match Scaffold_2*,27* Matching contigs Assembly I Scaffold_4 Notes Phaeodactylum tricornutum Telomere Pt1.1 P. tricornutum telomeric reads (ti) 497470457,497467564 497466195,497438805 497433017,497432006 497473526,497462443 497439000,497475793 497436130,497435745 497433138,497431433 497428964,497426458 497426012,497327814 497201633,497196540 496688873,496687672 496687368,496540102 496501694,496442151 496368157,496287854 496237494,495955811 495862426,497475953 497468402,497470592 495491415,497436948 496049654,496556801 Mate-pairs (ti) 497469401,497467468 497463123,497431029 497433113,497430278 497472278,497462539 497438328,497475697 497436034,497440257 497433042,497431529 497429924,497426362 497427548,497327718 497200577,497191260 496688777,496685560 496684680,496540198 496503998,496438215 496368061,496287758 496239510,495955907 495862522,497475857 497473010,497469536 495495845,497437044 496051094,496556033 Pt1 taaccc Selaginella moellendorffii Telomere S. meoellendorfii telomeric reads (ti) Mate-pairs (ti) Sm1.1 719652872,724381173,719721086, 724376452,759747506,890615144, 890629764,914888276,972912407, 723719484,1322567959 724377577,890728390,915002155, 963685248,725423635,915157800, 725423635,880044498 720076640,720341965,721061234, 721062270,914746476,914815049, 914978092,915048289,914926716, 914781105,890833335,880041317, 721035379 721056470,719761008,890799146, 914822624,914773281,759868321, 915046892,759822430,914989658 724405630,862141340,914830891, 719789463,719869212,719873610, 869270232,914827798,963751564, 914830891 719848926,719851227,862184720, 890674679,914747049,914928966, 915024149,963722392,964581542, 914919053,1373881150 759774573,725437065,915149230, 719926801,719907813,862173217, 759929666,759825654,724413280, 915009301,914810029,1372156212 721020322,719682553,720329563, 759724681,964560193 719767379,862156389,724392273, 915058592,1322560550 964583099,724365622,931566014, 914977027,719689425 883644317,722079112,915157322, 914885305,914809547,719814220, 724368260,1415630143 719653256,724381557,719720318, 724376068,759749522,890615048, 890631300,914891252,972912023, 723719580,1322564503 724378338,890726470,915002059, 963682562,759740858,915151476, 759740858,880046994 720070112,720344749,721061330, 721060542,914746092,914814953, 914977036,915050593,914926333, 914781009,890833239,880041221, 719890082 721056566,719754128,890799050, 914823004,914771752,759869473, 915049580,759821086,914989754 724406014,862141436,914827798, 719791383,719869308,719868714, 862196443,914830891,963751468, 914827798 719844710,719844710,862184336, 890674775,914746666,914930981, 915023765,963715523,964578950, 914919149,1373880094 759773325,725438601,915149609, 719926417,719907717,862172449, 759931490,759826710,725414886, 915010645,914809261,1372153140 721952031,719682937,720328027, 759724300,964560289 719767475,862156293,723758493, 915056193,1322561126 963781720,724366390,931564107, 914978083,721022224 883644221,721070063,915150998, 914887513,914810315,719814603, 723719891,1415633407 Sm1.2 Sm1.3 Sm1.4 Sm1.5 Sm1.6 Sm1.7 Sm2.1 Sm2.2 Sm2.3 Sm2.4 Notes Interstitial Supporting Table 2. Retroelement-containing telomeres from Coprinus cinereus, Phanerochaete chrysosporium, Phaeodactylum tricornutum and Selaginella moellendorffii. Scaffolding of telomeric reads from trace archives of each species with the corresponding subtelomeric contigs from C. cinereus and P. chrysosporium assembly 1 (GenBank), P. chrysosporium assembly 2 (JGI) and P. tricornutum assembly 1 (JGI) was done by BLASTN using mate-pairs for each telomeric read as queries. For S. moellendorffii, the assembly is not yet available. Sequences are identified by GenBank trace ID (ti) numbers and contig numbers from the corresponding assembly. Analysis of trace reads is required in addition to analysis of assembled contigs, since automated sequence assemblers tend to misassemble telomeres because of their repetitive nature and frequent detachment of telomeric reads from assembled contigs. Only PLE-containing telomeres are shown; a complete list of all C. cinereus and P. chrysosporium telomeric reads is available from the corresponding author upon request. Telomeres are numbered and listed in the same order as they appear in Fig. 2 (where they are marked by red letters T), from left to right for each element. Supporting Table 3. Genomic copy number of Athena and Coprina elements. (A) Results of A. vaga genomic library screening with Athena-specific probes (AvO and AvM). Shown is the number of fosmids containing each of the Athena variants listed on top (variants O.2 and M.2 contain minor defects in the reading frame). The presence of Athena was verified by Southern blot hybridization and sequencing. Numbers in parentheses represent fosmids which also yielded hybridization signals with the telomeric repeat probe. Also shown is the number of A. vaga hsp82 copies present on the same membranes (cumulative for all four copies). Membrane A B C Hsp82 total (4 copies) 9 10 21 AvO.1 AvO.2 AvM.1 AvM.2 7(5) 7(7) - 4(4) 5(5) - 7(2) 5(1) 5(5) 1(1) (B) Results of BLASTN searches of the C. cinereus and P. chrysosporium genome assemblies with Coprina elements as queries. Graphical output of BLASTN searches is used to visualize all hits on different contigs from the same scaffolds. Several telomeric copies were not assembled into scaffolds and are present only in trace archives. Element Coprina-Cc1 Coprina-Pc1 Coprina-Pc2 RT ORF cont1.397_scaffold73 cont1.171_scaffold8 Supporting Table 4. Likelihood-based statistical tests of alternative topologies within the PLE clade. Tests were performed in TREE-PUZZLE 5.2 under WAG+I+G8+F model of rate heterogeneity, with parameter estimates from PROTTEST. The columns show the pvalues of the following tests, with 1000 resamplings using the RELL method: SH Shimodaira-Hasegawa test; 1sKH - one sided Kishino-Hasegawa test based on pairwise SH tests; ELW - Expected Likelihood Weight (Shimodaira & Hasegawa, Mol Biol Evol 16:1114-1116; Goldman et al., Syst Biol 49:652-670; Kishino & Hasegawa, J Mol Evol 29:170-179; Strimmer & Rambaut, Proc R Soc Lond B 269:137-142). Tree log L difference S.E. p-1sKH p-SH c-ELW ------------------------------------------------------------------1 -52170.34 11.32 9.3290 0.1220 0.1220 0.0963 2 -52171.35 12.32 8.8585 0.0880 0.0930 0.0203 3 -52171.23 12.20 8.5707 0.0800 0.0920 0.0155 4 -52159.03 0.00 <---- best 1.0000 1.0000 0.8637 5 -52173.67 14.64 7.6827 0.0380 0.0400 0.0042
© Copyright 2026 Paperzz