Reaction and Transport in Gas Diffusion Electrodes of Li-O2 batteries: Experiments and Modeling T. Danner, B. Horstmann, D. Wittmaier, N. Wagner and W.G. Bessler 224th ECS Meeting, San Francisco, 10/29/2013 10/24/2013 ECS San Francisco > [email protected] uft i Hochschule Offenburg University of Applied Sciences Content I. Motivation and background II. Continuum model of an aqueous Li-O2 system III. Model parameterization IV. Model validation V. Electrode and cell design VI. Summary 10/24/2013 ECS San Francisco > [email protected] uft i Chart 2 Hochschule Offenburg University of Applied Sciences I. Motivation and background - Proposed designs - Aprotic Li-O2 batteries (π = 3 V) O2 + 2 Li+ + 4 eβ β Li2O2(s) - Stable electrolyte? - Solubility and diffusivity of O2? - Insulating discharge products - Aqueous Li-O2 batteries (π = 3.45 V) O2 + 2 H2O + 4 eβ β 4 OHβ - Stable anode protection? - Precipitation of LiOH·H2O - Advantage: GDEs Christensen, J. et al. J. Electroch. Soc. 159, R1 (2012). - β¦ ο¨ Very high theoretical energy densities 10/24/2013 ECS San Francisco > [email protected] uft i Chart 3 Hochschule Offenburg University of Applied Sciences I. Motivation and background - Porous Gas Diffusion Electrode O2 + 2 H2O + 4 eβ β 4 OHβ Design of aqueous Li-O2 batteries - High surface area - Fast transport of O2 ο¨High current densities - Lithium metal anode Li β Li+ + eβ - Stable anode protection - Separator - Precipitation of LiOH·H2O (cs = 5.3 mol ) l Li+ + OHβ + H2O β LiOH·H2O(s) - Clogging of transport pathways 10/24/2013 ECS San Francisco > [email protected] uft i Chart 4 Hochschule Offenburg University of Applied Sciences II. Continuum modeling Model geometry - 1D spatially resolved continuum model - Transport in liquid electrolyte - Concentrated solution theory - Electro-neutrality condition - Darcy flow π£β = β π΅ βπ β grad πliq π(πliquid π) = βdiv π£βπliq π β divπ₯β + π΄spez π Μ ππ - Global kinetics (Butler-Volmer type) ο¨ ORR/OER - Single set of parameters ο¨ Literature or own experiments ο¨ Simulation software DENIS Horstmann, B. et al. Energy Environ. Sci. 6, 1299β1314 (2013). Neidhardt, J. P. et al. J. Electrochem. Soc. 159, A1528 (2012). Bessler, W. G. et al. Electrochim. Acta 53, 1782β1800 (2007). 10/24/2013 ECS San Francisco > [email protected] - DENIS: Detailed Electrochemistry and Numerical Impedance Simulation - In-house software uft i Chart 5 Hochschule Offenburg University of Applied Sciences II. Continuum modeling Transport in porous media - Effective transport properties - Bruggeman equation: πππ π·π π½ = π·π0 β πliq = π·π0 β π 0 π π½ - Capillary pressure in porous electrodes ππ = πgas β πliq = βππ‘ π0οΏ½ π π½(π ) - Constant Total Volume βπ ππ (ππ ) = 1 - Liquid equation of state: βπ ππliquid πππ ππ = 1 - Gas equation of state: πgas πgas = πgas π π π½ π ππ‘ π0 π π Leverett Function Surface tension Free volume fraction Permeability Viscosity Kumbur, E.C. et al. J. Electrochem. Soc. 154, B1295 (2007).; Hao, L. et al. Int. J. Heat Mass Transfer 55, 133β139, (2012). Desnoyers, E. et al. Can. J. Chem. 62, 878-885 (1984).; Herrington, T.M. et al. J. Chem. Eng. Data 31, 31-34 (1986).; Millero, F.J. et al. J. Acoust. Soc. 61, 1492-1498 (1977). 10/24/2013 ECS San Francisco > [email protected] uft i Chart 6 Hochschule Offenburg University of Applied Sciences III. Model parameterization - Thermodynamic parameters - LiOHβ H2O precipitation - βSalting-outβ of oxygen Literature Temperature / K 380 360 340 320 300 280 LiOH solubility 260 5 6 7 8 Molality / molLi /kgH2O + - Kinetic parameters - ORR/OER - Structural parameters - Porosity, tortuosity, etc - Transport parameters - Leverett function - Effective transport 10/24/2013 ECS San Francisco > [email protected] uft i Chart 7 Hochschule Offenburg University of Applied Sciences III. Model parameterization β Electrochemical characterization - Three-electrode setup 1M LiOH - Alkaline LiOH solution (0.1-2M) - Pure oxygen (1 atm) - Ag-GDE (commercial) - Defined structure - Measurements - CV, EIS 1M LiOH ο¨ Broad parameter range for parameterization and validation Gierszewski et al., Fusion Eng. Des., 13, 59β71. (1990). Light et al., Electrochem. Solid-State Lett., 8, E16. (2005). 10/24/2013 ECS San Francisco > [email protected] uft i Chart 8 Hochschule Offenburg University of Applied Sciences III. Model parameterization β Structural characterization FIB-SEM Binarization FIB-SEM Reconstruction ο¨ Good agreement to experimental results Collaboration with S.K. Eswara Moorthy, Central Facility of Electron Microscopy, University of Ulm 10/24/2013 ECS San Francisco > [email protected] uft i Chart 9 Hochschule Offenburg University of Applied Sciences III. Model parameterization β Transport parameters Collaboration with Prof. Arnulf Latz - Lattice-Boltzmann modeling - 2D and 3D simulations - SRT-BGK model - Multiphase simulations (Rothmann-Keller type) - Heterogeneous structures - Simulation of pc-S curves - Effective transport properties Initial code provided by Prof. Volker Schulz (DHBW Mannheim) Liu, H. et al. Physical Review E, 85, 046309 (2012). Leclaire, J Comput Phys, 246, 318β342 (2013). 10/24/2013 ECS San Francisco > [email protected] uft i Chart 10 Hochschule Offenburg University of Applied Sciences III. Model parameterization - Thermodynamic parameters - LiOHβ H2O precipitation - βSalting-outβ of oxygen Literature Temperature / K 380 360 340 320 300 280 LiOH solubility 260 5 - Kinetic parameters - ORR/OER 6 7 8 Molality / molLi /kgH2O + Half-cell experiments - Structural parameters FIB-SEM - Porosity, tortuosity, etc - Transport parameters - Leverett function - Effective transport Lattice β Boltzmann simulations ο¨ Single set of parameters 10/24/2013 ECS San Francisco > [email protected] uft i Chart 11 Hochschule Offenburg University of Applied Sciences IV. Model validation Nyquist plot - 1 M - 25 °C 4 2 - Imaginary / (Ohm οcm ) - IV curves and impedance spectra - Deviation at high temperature, overpotential - Change in reaction mechanism? 4 IV curves - 0.1 M LiOH 200 2 0 0 150 1 5 0 100 0 5 0 0 0.0 10/24/2013 0 . 6 0.2 0.4 0.6 Overpotential / V 4 2 2 1 0 4 5 6 7 2 Real / (Ohm οcm ) 0.8 2 5 0 0 2 0 0 0 1500 1 5 0 0 1000 1 0 0 0 500 2 . 0 2 . 5 3 . 0 25 °C 40 °C 55 °C 1.5 Simulation Experiment 1 . 5 1.0 1 . 0 0.5 0 . 5 5 0 0 0 0.0 9 Nyquist plot - 2 M - 7 2 2000 Simulation Experiment 1 Experiment 2 0 8 0 . 8 1 0 0 50 5 3 0 0 0 2500 2 5 0 0 . 4 - Imaginary / (Ohm οcm ) Simulation Experiment 1 Experiment 2 0 . 2 25 °C 40 °C 55 °C 3 0 0 ο2 ο2 Current / (A οm ) 250 0 . 0 3000 25 °C 40 °C 55 °C Simulation Experiment IV curves - 2 M LiOH 0 . 8 Current / (A οm ) 300 0 . 6 9 3 1 . 5 0 . 4 8 3 0 0 . 2 7 1 - Additional transport limitations? 0 . 0 6 900mV 800mV 700mV 600mV 500mV 5 ο¨ Good qualitative agreement 5 0.2 ECS San Francisco > [email protected] 0.4 0.6 Overpotential / V 0.8 0.0 0 . 0 1.5 2.0 2.52 Real / (Ohm οcm ) uft i 3.0 Chart 12 Hochschule Offenburg University of Applied Sciences V. Electrode and cell design Gas Diffusion Electrodes - Sensitivity of current density (π 0 β π + )βπ 0 Sj = 0 π β π + βπ 0 - No influence of - Anode (three electrode setup) - O2 pore-space transport (no liquid film modeled) - High sensitivity of - Cathode kinetics (π 0 , π½) ο¨Development of new catalysts - Structural parameters (π, π, π΄π ) ο¨Optimization of GDE structure ο¨ Validated 1D model as design tool 10/24/2013 ECS San Francisco > [email protected] uft i Chart 13 Hochschule Offenburg University of Applied Sciences V. Electrode and cell design β Precipitation in aqueous Li-O2 batteries Horstmann, B., Danner, T., & Bessler, W. G. Precipitation in aqueous lithiumβoxygen batteries: a model-based analysis. Energy & Environmental Science, 6(4), 1299β1314. (2013). - Classical theory of nucleation and growth Li+ + OHβ + H2O β LiOH·H2O(s) (a) Nucleation on surfaces ο¨ Porous separator (b) Nucleation on dust particles ο¨ Bulk separator ο¨ Precipitation mainly on anode side P. Stevens et al., Development of a lithium air rechargeable battery, ECS Transactions 28, 1 (2010). 10/24/2013 ECS San Francisco > [email protected] uft i Chart 14 Hochschule Offenburg University of Applied Sciences - Evaluation of battery design - Flooded electrodes best at low rates - Gas Diffusion Electrodes best at high rates - Bulk separator superior at very high rates ο¨ Precipitation as engineering task Energy density / Wh/kgH2O III. Modeling and simulation β Precipitation in aqueous Li-O2 batteries Porous seperator GDE Flooded Bulk seperator GDE 3000 2000 1000 0 0.01 0.1 1 10 100 Discharge current / A/m2 ο¨ Design depends on operating conditions 10/24/2013 ECS San Francisco > [email protected] uft i Chart 15 Hochschule Offenburg University of Applied Sciences IV. Summary - Model experiments on Ag GDEs - Parameterization and validation - FIB-SEM for electrode reconstruction - Structure determination - Lattice-Boltzmann simulations - Multiphase flow uft i - Detailed model of precipitation in aqueous Li-O2 batteries ο¨ Operating conditions determine battery design - Validation of transport model ο¨ Good qualitative agreement Thank you for your attention! 10/24/2013 ECS San Francisco > [email protected] uft i Chart 16
© Copyright 2026 Paperzz