Solution of Chemical Equilibrium Cool Classroom Work [๐๐]2 Soln. 1(b) In the expression for equilibrium constant species in solid state are not written (that is their mar concentration are taken as 1) P4(s) + 5O2(g) โ P4O10(s) So, Kc = 1/[O2]5 Kc = Soln. 2(a) First option is incorrect as the value of KP given is wrong. It should have been Soln. 9(a) ๐ ๐ถ๐ 2 KP = ๐ ๐ถ๐ป 4 × ๐ ๐ 2 ๐2 [๐2 ] NO โ 1 2 N2(g) + 1 2 O2(g) Kc = [๐2 ]1/2 [๐2 ]1/2 [๐๐] 1/4 × 10โ4 = 50 = (1/๐พ๐ ) = K c 1 = 4.9 × 10 โ 2 = Kc 2 = 2 = 4 × 10 โ 4 ๐๐2 ๐2 1/2 [๐๐3 ] [SO 3 ]2 [SO 2 ]2 [O 2 ] K c 2 = (1/Kc 1 )2 = (1 / 4.9 × 10 โ 2)2 = 416.5 Soln. 3(a) Kp = Kc(RT)โng โng = 1 โ 1.5 = โ 0.5 Soln. 10(c) As equation (c) = equation (a) + equation (b) So K3 = K1K2 ๐พ Kp = Kc(RT) โ ½ = (๐ ๐)๐1/2 ๐พ So, ๐พ๐ = (RT)1/2..s ๐ Soln. 11(d) As 2nd eq is reverse and half of 1st one so Soln. 4(c) (Kc) = (๐ ๐)โ๐ = (8.134 ×700)1 = 3.1 × 10 โ 7 Soln. 5(b) (Kp) = Kc (RT)โn โฆโฆโฆ.(i) (where โn = 1 โ 2 = โ 1) Substituting this value of โn in equation (i), Kp = KC (RT) โ1 Soln. 6(a) Kp = Kc(RT)โn โn = 3 โ 2 = 1 Kp = Kc (0.0831 × 457)1. 1 K ๏ขc = 1.8 × 10 โ3 ๐พ๐ ๐พ๐ 1 or ๐พ = ๐ ๐ ๐ Kc = 1 1 4 × 10 โ4 = 2 × 10 โ2 = 50 Soln. 12(a) For reaction (1) ๐๐ 2 K1 = ๐2 ๐2 and for reaction (2) K2 = ๐2 1 2 ๐2 1 2 ๐๐ 1 therefore K1 = ๐พ 2 2 Soln. 13(d) Given, N2 + 3H2 โ 2NH3; K1 N2 + O2 โ 2NO; K2 โฆ(i) โฆ(ii) 1 Soln. 7(d) 2C(s) + O2(g) โ 2 CO2(g) โn = 2 โ 1 = + 1 ๏ Kc and Kp are not equal. We have to calculate 4NH3 + 5O2 โ 4NH + 6H2O; K = ? or 2NH3 + 5O2 โ 2 NO + 3H2O For this equation, K = Soln. 8(d) N2(g) + O2(g) โ 2NO(g) โฆ(iii) H2 + 2 O2 โ H2O; K3 but K1 = ๐๐ป3 2 ๐2 ๐ป2 3 ๐๐ 2 ๐ป2 ๐ 3 ๐๐ป3 2 ๐2 5/2 , ๐พ2 = ๐๐ 2 ๐2 ๐2 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 1 Solution of Chemical Equilibrium & K3 = ๐ป2 ๐ ๐ป2 ๐2 Now operate, = = ๐๐ 2 ๐2 ๐2 × ๐๐ป3 2 ๐5 5/2 ๐ป2 ๐ 3 ๐ป2 3 ๐2 3/2 ๐พ2 .๐พ33 ๐พ1 ๐ป2 ๐ 3 . ๐ป2 3 ๐2 3/2 ๐๐ 2 ๐ป2 ๐ 3 ๏๐พ = ๐๐ ๐พ3 = 1 2 ๐2 ๐ป2 3 ๐๐ป3 2 =K ๐พ2 .๐พ33 ๐พ1 Soln. 14(d) N2O4(g) โ 2NO2 (g) (โn = 1) Kp > Kc Since the temperature is kept constant hence both Kp and Kc remain unchanged. However, when volume is halved, pressure doubles up (Boyleโs law). So in order to keep Kp unchanged ๏ก must decrease. N2O4 (g) โ 2NO2 Initial conc. a 0 ๏ก = Degree of ๏ก 2๏ก dissociation aโ๏ก 2๏ก conc. left Total no. of moles at equilibrium = a โ ๏ก + 2๏ก = (a + ๏ก) Let the pressure at equilibrium = P by (a + ๏ก) mole 2๏ก Partial pressure of NO2 = PNO 2 = a+ ๏ก P aโ ๏ก Partial pressure of PN 2 O 4 = a+ ๏ก P Kp = (๐ ๐๐ 2 )2 ๐๐ 2 ๐ 4 = 4๏ก4 ๐ ๐ 2 โ๏ก2 Since Kp is unchanged ๏ก๏ต 1 Soln. 17(c) โng = โ ve โ takes place with decrease in number of moles or pressure, so increase in pressure shifts equilibrium in forward side. โH๏ฐ = โ ve โ takes place with evolution of heat or increase in temperature, so decrease in temperature shifts this equilibrium in forward side. Soln. 18(d) Cl2(g) + 3F2(g) โ 2 ClF3(g); โH = โ 329 kJ. Favourable conditions (i) Decrease in temperature (ii) Addition of reactants (iii) Increase in pressure, that is, decrease in volume Soln. 19(d) Solid โ Liquid It is an endothermic process. So when temperature is raised, more liquid is formed. Hence adding heat will shift the equilibrium in the forward direction. Soln. 20(c) For the reaction BaO2(s) โ BaO(s) + O2(g); โH = + ve. At equilibrium kp = PO 2 [For solid and liquid concentration term is taken as unity] Hence, the value of equilibrium constant depends only partial pressure of O2. Further on increasing temperature formation of O2 increasing as this is an endothermic reaction. ๐ As P increases ๏ก decreases or changes. Soln. 15(d) Kp is not based upon pressure and concentration. Soln. 16(c) The given reaction, in the forward direction, is endothermic and proceeds with an increase in number of moles gaseous constituents. As such high temperature and low pressure will favour the forward process. An increase in concentration of I or decrease in concentration of I2 will shift the equilibrium in the backward direction. Soln. 21(b) N2 + 3H2 โ 2NH3 At equilibrium, addition of a reactant or any catalyst has no effect. However, the catalyst brings the equilibrium faster by increasing both forward and backward reactions. Soln. 22(d) For reaction to proceed from right to left Q > Kc (backward rate) (forward rate) i.e. the reation will be fast in backwared direction i.e r b > rf. Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 2 Solution of Chemical Equilibrium Soln. 23(c) [๐๐2 ]2 Kc = [๐ 2 ๐4 ] = 3 × 10 = โ3 Soln. 28(d) CO2(g) + C(s) โ 2CO(g) 0.5 โ x 2x 0.5 โ x + 2x = 0.8 x = 0.3 (1.2 × 10 โ2 )2 4.8 × 10 โ2 mol L โ 1 Soln. 24(d) NH4HS(s) โ NH3(g) + H2S(g) 0 0.5 0 Initial pressure At equilibrium 0 0.5 + x Total pressure = 0.5 + 2x = 0.84 So, x = 0.17 atm Kp = PNH 3 × PH 2 S = 0.11 atm2 x Soln. 25(a) PCl5 โ PCl3 + Cl2 1 0 0 1โx x x PPCl 5 = Total pressure × mole fraction of PCl3 =P ๐ฅ 0.6 ×0.6 K= Soln. 29(b) For the reaction 2AB2(g) โ 2AB(g) + B2(g) At equi. 2(1 โ x) 2x x Kc = ๐ด๐ต 2 ๐ต2 or Kc = ๐ด๐ต2 2 2(1โx) (2+x) × P where P is the total pressure. 2๐ฅ (2๐ฅ)2 KP1 = (1โ ๐ฅ) (P1 / 1 + x)1 ZโP+Q 1 0 0 (1 โ x) x x KP2 = (1โ๐ฅ) (P2 / 1 + x) 4 × ๐1 ๐2 1 1 = ๐ ๐ด๐ต 2 ๐ ๐ต 2 ๐ ๐ด๐ต 2 = 1.27 × 10 โ 3 2 ๐ฅ ๐ฅ 2 × ๐ 2 .๐× 2 1โ๐ฅ 2 ×๐ 2 ๐ฅ 3 .๐ 3 = Soln. 27(d) The volume occupied by water molecules in vapour phase is (1 โ 10 โ 4)dm3, that is approximately 1 dm3. Pvap V = nH 2 O RT 3170 (Pa) × 1 × 10 โ 3 (m3) = nH 2 O (mol) × 8.314 (J K โ 1 mol โ 1) × 300 (K) 8.314 ×300 ๐ฅ PB 2 = 2 × ๐ [๏ 1 โ x โ1] = 2 ×1 × ๐ 2 On solving, we get P1: P2 = 1: 36 3170 × 10 โ3 Since x is very small so can be neglected in denominator Thus, we get PAB 2 = (1 โ x) × P PAB = x × P Now, KP = =9 nH 2 O = ๐ฅ PAB = (2+๐ฅ) × ๐, ๐๐ต2 = (2+๐ฅ) × ๐ Soln. 26(a) X โ 2Y 1 0 (1 โ x) 2x (๐ฅ)2 2๐ฅ 2 ×๐ฅ 2 1โ๐ฅ 2 = x3[(1 โ x) can be neglected in denominator (1 โ x) ๏ โ 1] The partial pressures at equilibrium are calculated on the basis of total number of moles at equilibrium. Total number of moles = 2 (1 โ x) + 2x + x = (2 + x) ๏ PAB 2 = 1+๐ฅ = 1.8 atm 0.2 ๐ฅ 3 .๐ 2 1 ๐๐ ๐ฅ 3 = 2.๐พ๐ ๐ ๐๐ ๐ฅ = 2๐พ๐ 3 ๐ Soln. 30(c) 2A(g) + B(g) โ 3C(g) + D(g) Mole ratio 2 1 3 1 Molar conc. at 1 1 0 0 t=0 Equilibrium 0.50 0.75 0.75 0.25 Molar concentration Kc = ๐ถ 3 ๐ท ๐ด2 ๐ต = 0.75 3 0.25 0.50 2 0.75 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 3 Solution of Chemical Equilibrium Soln. 31(c) ๏ SOโ2 4 Na2SO4 โ 2Na + 0.004 Let x be the degree of dissociation x 2x x conc left 0.004 โ x 2x x No. of species left in soln. = 0.004 โ x + x + 2x = 0.004 + 2x The conc. of isotonic c1 = c2 0.004 + 2x = 0.01 2x = 0.006 X = 0.003 = 3 × 10 โ 3 M % of dissociation = 3 × 10 โ3 4 × 10 โ3 0.003 × 100 = 0.004 × 100 = 75% Soln. 32(b) N2(g) + 3H2(g) โ 2NH3 (g) โn = 2 โ (1 + 3) = โ 2 R = 0.082 T = 500 + 273 K = 773 K Kp = Kc × (RT) โ 2 1.44 × 10 โ5 ๐พ Kc = (๐ ๐)๐โ2 = (0.082 ×773)โ2 Cool MCQ Level 1 Soln. 8(c) ๐พ๐ 2 โ๐ป๏ฐ 1 ๐ ๐1 1 Soln. 1(c) In region (I), the concentration of reactants and products are constant hence this region shows equilibrium. ln ๐พ Soln. 2(a) Soln. 9(d) A(g) + 2B(g) โ 3C(g) + D(g) โng = (3 + 1) โ (1 + 2) = 1 Kp = Kc (๐ ๐)โng Soln. 3(d) Use the vanโt Hoff equation. ๐1 = ln = 10 โ4 10 โ6 โ๐ 2 โ๐ป๏ฐ = 8.314 25 298 ×323 โrH๏ฐ = 147.41 kJ / mol 0.05 โ ๐ x 1000 = Kc Soln. 4(a) Use the vanโt Hoff equation ๐ ln ๐พ๐ ๐๐ โ๐ป° = ๐ ๐ 2 or, ln Kp = ๏ญ โด โ๐ป 1 ๐ ๐ + C. Soln. 5(a) For endothermic reactions, the equilibrium constant increases with increase in temperature. Soln. 6(a) 5 x 10 โ2 x 10 โ3 or, Kc = โH โต logKc = log(constant) โ โด logKcโ T [slope = log(constant)] 1 2.303RT = Kc 5 x 10 โ5 ๐ Soln. 10(d) โต Kp = KC(RT)โng ; Kp = 1.44 x 10-5 for reaction N2(g) + 3H2(g) โ 2NH3(g) โng = 2 โ (1 + 3) = -2; T = 500°C = 773 K โด KC = Soln. 7(b) The effect of temperature on Kc is given by VantHoffโs equation ๐ KP (RT )โn g 1.44 x 10 โ5 = (0.082 x 773)โ2 Soln. 11(c For the reaction, N2(g) + 3H2(g) โ 2NH3(g), โn = -2. Kp = Kc(RT)โn = Kc(RT)-2 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 4 Solution of Chemical Equilibrium ๐พ Soln. 21(a) Stability of 1 Stability โ โ equilibrium constant (for Complex constant โ Kc = (๐ ๐)๐โ2 dissociation ) Soln. 12(c) 1 3 NH3 (g) โ 2 ๐2 ๐ + 2 ๐ป2 ๐ Kc = 4 ๏ Kc for the following reaction: N2 (g) + 3H2 (g) โ 2NH3 (g) ๏ng = 2 โ 4 = ๏ญ 2 1 will be equal to 4 2 Kp = Kc RT Soln. 22(d) (i) XeF6 (g) + H2O (g) โ XeOF4 (g) + 2HF (g); K1 (ii) XeO4 (g) + XeF6 (g) โ XeOF4 (g) + XeO3 F2 ; K2 Required reaction: XeO4 (g) + 2HF (g) โ XeO3 F2 (g) + H2O (g) It is obtained by subtracting (i) from (ii), hence equilibrium constant of the required equation will be: โn g 1 = 4 2 × 800 × ๐ โ2 = 1 2 4×800 ๐ Soln. 13(d) In the reaction 2C(s) + O2 (g) โ 2CO(g) ๏ng๏น 0 hence Kp and Kc will not be equal. K2 K1 Soln. 14(b) Equilibrium constant at a given temperature is always constant. Soln. 16(d) ๐พ2 Soln. 19(c) 1 1 ๐ + 2 ๐2 + 2 ๐ 2 2 2 1 1 ๐ + 2 ๐2 โ ๐๐ 2 2 โ ๐๐๐ 1 × K2 = and K2 = [๐๐๐น6 ][๐ป2 ๐] [๐๐๐๐น4 ][๐๐๐ 3 ๐น2 ] [๐๐๐ 4 ][๐๐๐น6 ] [๐๐๐ 3 ๐น2 ][๐ป2 ๐] [๐๐๐๐น4 ][๐ป๐น]2 1 K1 = 1 2.5×10 5 K2 = 5 ๏ด 10 โ 3 1 2.5×10 5 ๐พ1 = [๐๐๐ 3 ๐น2 ][๐ป2 ๐] [๐๐๐๐น4 ][๐ป๐น]2 = K3 Soln. 24(d) Equilibrium constant Kp is independent of pressure and concentration, it depends only on temperature. K Kโฒ = PQ + 2 R2โ PQR K1 [๐๐๐๐น4 ][๐ป๐น]2 Dividing K2 by K1, we have Soln. 18(c) Kp does not depend on the equilibrium pressure. 1 K1 = K3 = Soln. 17(b) K= Soln. 23(d) Suppose equilibrium constant for reaction XeO4(g) + 2HF(g) โ XeO3F2(g) + H2O(g) is K3. Then Soln. 15(c) 1 Thus A will be more stable. Option D is also incorrect because stability of complex is directly proportional to stability constant. × 5 × 10โ3 = 1 ๏ด 10 โ 5 Soln. 20(b) On heating the colour deepens. This indicates that more NO2 is formed. Thus, the reaction of formation of NO2 is endothermic, for which ฮH will be positive. Soln. 25(d) Kp is not affected by change in volume of the container. N2O4(g) โ 2NO2 (g) At t = 0 1 0 (ฮฑ = degree of At equilibrium (1 โ ฮฑ) 2ฮฑ dissociation) If total pressure = P atm Then, total moles at equilibrium = 1 โ ฮฑ + 2ฮฑ = 1 + ฮฑ โต PA = XA x Ptotal (XA = Mole fraction of A) 1โ ๐ผ 2๐ผ โด PN2 O4 = 1+ ๐ผ x P and PNO2 = 1+ ๐ผ x P (PNO )2 โด Kp = (P or, ฮฑ2 = 2 N2 O4 )1 = 2๐ผ P 1+ ๐ผ 1 โฮฑ P 1+ฮฑ 4๐ผ 2 ๐ =2(1โ ๐ผ 2 ) KP 4P +KP Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 5 Solution of Chemical Equilibrium โตฮฑโ Soln. 31(b) KP ฮฑ= 4P + KP QC = 1 ๐2 (๐) 2 ๐2 (๐) 1 2 2 = (3/2) = 3 P โต KP is constant, as the volume of container is reduced to its half, the pressure will become double and ฮฑ will be decreased. 2 [A] = 3 ; [๐ถ]2 Soln. 26(b) Given K1 = Soln. 32(a) Given KC = 49 [๐๐2 ]2 [๐๐]2 [๐2 ]1 Q = [๐ด]2 [๐ต] = [๐ ๐4 ] and K2 = [๐๐2 and K3 = [๐๐]2 [๐ 1 2] Multiplying K2 by K1, we get [๐ ๐4 ] 2 2] [๐๐ ]2 x [๐๐]2 2[๐ 1 2] [๐ ๐ ] = [๐๐]22 [๐4 1 2] 3 3 2 1 x 2 3 3 3 [C] = 3 27 3= 4 โต Q < KC, thus the reaction must proceed in forward direction. 2 2] [๐2 ๐4 ] K2 x K1 = [๐๐2 1 [B] = 3 ; = K3 Soln. 27(a) [๐๐]2 Given K1 = [๐ Soln. 33(d) Concentration of all gases increases and equilibrium shifts toward less no. of moles but new equilibrium concentration of every gas would be higher than earlier. 2 ][๐2 ] and K2 = โ ๐พ22 = [๐2 ]1/2 [๐2 ]1/2 [๐๐] [๐2 ][๐2 ] 1 =๐พ [๐๐]2 1 1 2 or, K1 = ๐พ2 Soln. 28(a) Kp is independent of pressure for reaction 2NH3(g) โ N2(g) + 3H2(g); โng> 0. Thus, degree of dissociation of NH3 will decrease as pressure increases and thus the concentration of NH3 will be changed. Further, equilibrium concentration of N2 will be less than the equilibrium concentration of H2. Soln. 29(c) The value of equilibrium constant K decreases with increase in temperature. This indicates that the forward reaction is exothermic. Hence, energy of HI > total energy H2 + I2 โต 1 Stability โ Energy โด HI will be relatively less stable than that of H2 and I2 Soln. 30 Unit of Kc = [Unit of concentration]๏n = [mol. dm โ 3] (๏n = ๏ญ 1) = dm3 mol. โ 1 Soln. 34(d) At constant volume, there is no effect of inert gas addition. Soln. 35(a) Equilibrium will shift in backward direction when volume in increased, thus number of moles of H2 will increase. Soln. 36(b) Addition of inert gas will shift the equilibrium towards higher volume direction. PCl5 (g) โ PCl3 (g) + Cl2 (g) Thus, addition on inert gas at constant pressure will increase the dissociation of PCl5. Soln. 37(a) In the reaction C(s) + H2O(g) โ CO(g) + H2(g) ๏ng> 0, hence the reaction will shift in forward direction by increasing volume (or lowering the pressure). Soln. 38(a) The reaction includes only solid species hence Le Chatelierโs principle is not applicable to it. Soln. 39(a) Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 6 Solution of Chemical Equilibrium Soln. 40(c) Addition Cu(s) will not change the equilibrium because: Fe 3+ K= 2 Soln. 45(b) Let initial moles of H2(g) is 1 Fe2O3(s) + 3H2(g) โ 2Fe(s) + 3H2O(g) At eqm โ 1 โ 3x โ 3x 3๐ฅ 3 ๐ 1โ3๐ฅ 3 ๐ Cu 2+ Fe 3+ 2 Kc = Soln. 41(a) 1 CO2 (g) โ CO (g) + 2 O2 (g) 1 ๏ญ๏ก teq. ๐ผ 1/2 2 ๐ผ K= 1โ๐ผ ๏ก = ๐ผ 2 ๐ผ 3/2 1โ3๐ฅ ๏ x = 0.22 % of H2 unreached = 2 3 3๐ฅ ๏8= 1โ3 ×0.22 1 × 100 = 34 (๏ก<< 1) Soln. 46(b) Soln. 42(c) N2O4 (g) โ 2NO2 (g) t0 1 0 teq. 1 ๏ญ๏ก 2๏ก Kp = 2๐ผ 2 × 1โ๐ผ ๐ ๏n = 1 ๏ญ๏ก + 2๏ก = 1 + ๏ก ๏ng = 2 โ 1 = 1 1 1+๐ผ 2NOCl(g) โ 2NO(g) + Cl2(g) At eqm P โ 2x 2x x P + x =1; P โ 2x = 0.64, x = 0.12 0.24 2 0.12 Kp = 0.64 2 = 168.875 × 10 โ 3 atm. 4ฮฑ2 Kp = 1โฮฑ2 P Soln. 47(c) 1/2 ๐พ๐ ๐ ๐พ๐ 4+ ๐ ๐ผ= 1 ×1 Qc = 1 ×1 = 1 Soln. 43(c) The gaseous mixture contains 40% Cl2 and 40% PCl3, since they are produced in 1:1 mole ratio. The PCl5 % is 20. For ideal gases mole % โก volume % PCl 2 = PPCl 3 ๏ 2 × 0.40 = 0.80 atm PPCl 5 = 2 × 0.2 = 0.40 atm ๏ Kp = = ๐ ๐๐ถ๐ 3 .๐ ๐ถ๐ 2 0.80 ×0.80 Soln. 44(a) For an ideal gas mole % โก volume % 2 = 0.55 2 0.45 2 1+๐ฅ 1+๐ฅ 1โ๐ฅ 1โ๐ฅ 10 10 10 10 ๏ x = 0.333 1+๐ฅ [A2(g)] = 10 = 1.333 10 = 0.133 Soln. 48(b) 2 ๐ ๐ด๐ต 2 2 ๐ด 2 .๐ ๐ต 2 = 5 × 32 × 0.40 ๐๐ป2 0.25 = 1โ๐ฅ 2 10 1+๐ฅ 2 10 22 = 1.6 atm Kp = Conc. eqm Kc = ๐ ๐ ๐๐ถ๐ 5 ๐๐ป2 2 ๐ โต Qc> Kc so reaction will proceed in backward direction A2(g) + B2(g) โ C2(g) + D2(g) ×๐ =๐ 2 ๐ ๐ด๐ต 2 2 ๐ด 2 .๐ ๐ต 2 × ๐ ๐ก๐๐ก๐๐ ๐ ๐ ๐ 10 ×0.0821 ×300 8.21 Soln. 49(a) Kc = ๐ป2 ๐(๐) ๐ป2 (๐) ๐ฅ = 1.49 ๏ 8 × 10 โ 2 = 0.3โ๐ฅ ๏ x = 0.022 [H2S(g)] = 0.022 2 = 0.011 M Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 7 Solution of Chemical Equilibrium Soln. 50(b) Initial conc. At eqm 5= ๐ฅ+1 4 CO + H2O โ CO2 + H2 3 3 x 0 2 2 (x + 1) 1 = 20 = x + 1 ๏ x = 19 Soln. 51(a) A2(g) + B2(g) โ 2AB(g) Initial conc 10/2 15/2 5/2 At eqm. 5โx 7.5 โ x 2.5 + 2x โต 2.5 + 2x = 7.5 ๏ x = 2.5 7.5 2 Kc = 2.5 ×5 = 4.5 Soln. 52(d) 2NH3 (g) โ N2 (g) + 3H2 (g) t=0 2 0 0 teq. 1 1/2 3/2 Kc = = Soln. 56(d) AB(g) โ A(g) + B(g) 1 0 0 1 1 1 - 3 + 3 + 3 2 1 1 3 3 3 2 1 1 4 (ฮฃn)eqlm = 3 + 3 + 3= 3 Kp = 1 3 3 × 2 2 12 = 1.685 = 1.7 Soln. 53(d) Fe3+ + SCN โโ [FeSCN]2+ t0 3.1 3.2 0 teq. 0.1 0.2 3 3 K = 0.1×0.2 = 150 ๐ AB = 1 1 3 3 4 ๐4 ๐ 3 3 2 3 4 ๐ 3 1 = 8 p. โด p = 8Kp. Soln. 57(b) NH4COONH2(s) โ 2NH3(g) + CO2(g) 2 1 ๐3 ๐ 3 2 Kp = ๐NH ๐ = 3 CO2 2 3 ๐ 2 1 3 4 ๐ = 27 ๐3 4 = 27 x (2)3 = 1.185 Soln. 58(a) ๐2 ๐ป2 3 ๐๐ป3 2 ๐ A๐ B ๐๐4 Kp = ๐ 2(๐) = ๐ 8(๐) 4 ×0.3 4 0.70 = 2.96 Soln. 59(c) Kp = ๐ 4 1 ๐ป 2 ๐(๐) ๏PH 2 O g = 1 1/4 Kp โ 12 1 / 4 ๏ (10 ) = 10 โ 3 atm ๏ Kp = 10 โ 3 × 760 = 0.76 torr. Soln. 54(a) Soln. 55(d) A(g) + B(g) โ 2C(g) ๐ถ 3 0 ๐ถโ ๐ 3โ๐ 2๐ From the question, 2๐ = 3 โ ๐ = 1.5 3= Soln. 60(b) XY โ 2Y t0 1 0 teq. 1 ๏ญ๏ก 2๏ก Kp 1 = (2๐ฅ)2 ๐โ๐ฅ (3โ๐ฅ) Substituting ๐ = 1.5, we get ๐ถ = 3.5 2 2ฮฑ P 1+ฮฑ 1 1โฮฑ P 1+ฮฑ 1 4๐ผ 2 ๐1 = 1โ๐ผ 2 Kp1 Kp2 1 = 9 ๐1 ๐2 = Kp 2 = Zโ P+Q 1 0 0 1 ๏ญ๏ก ๏ก ๏ก 2 ฮฑ P 1+ฮฑ 2 1โฮฑ P 1+ฮฑ 2 ๐ผ2๐ = 1โ๐ผ22 4๐ผ 2 ๐ 1 1โ๐ผ 2 ๐ผ2๐ 2 1โ๐ผ 2 4๐1 ๐2 1 = 36 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 8 Solution of Chemical Equilibrium Soln. 61(d) For equilibrium, 2NH3(g) โ N2(g) + 3H2(g) At t = 0 2 0 0 At equilibrium 1 ½ 3/2 โด Kc = 1 ๐2 [๐ป2 ]3 x 3 27 3 = 1.6875 โ 1.7 = 2(1)22 = 16 [๐๐ป3 ]2 Soln. 62(a) For equilibrium I2โ 2Iโ (at 1000 K) At t = 0 1 0 (ฮฑ = degree of dissociation) At equilibrium (1 โ ฮฑ) 2ฮฑ [I2]eq = 1โ ๐ผ 1 ; [Iโ]eq = 2ฮฑ โด KC = 10-6 = [2๐ผ]2 KC = [๐ถ]2 [๐ท] ๐ด [๐ต]2 0.2 2 (0.1) 1.0 (1.8)2 = 0.00123 Soln. 65(d) 2AB3(g) โ A2(g) + 3B2(g) At t = 0 8 0 0 At equilibrium (8 โ 2x) x 3x Given [A2] = 2 (at equilibrium) โด Moles of AB3 at equilibrium = 8 โ 2 x 2 = 4 Moles of B2 = 3 x 2 = 6 4 โด [AB3]eq = 1 (Volume: 1 dm3 = 1 L) [A2] = 2 [B2] = 6 [๐ด2 ][๐ต2 ]3 Kc = 1โ ๐ผ = [๐ด๐ต3 ]2 2 x(6)2 = 42 = 27 4๐ผ 2 10-6 = (1โ ๐ผ) Soln. 66(b) 4๐ผ 2 1 or, 10 6 = (1โ ๐ผ) Kp = (๐ or, 4 x 106ฮฑ2 = 1 โ ฮฑ taking 1 โ ฮฑ โ 1 1 Kp = (๐ โฒ [๐๐3 ]2 [๐๐2 ]2 [๐2 ] ๐๐ข๐๐๐๐ ๐๐ ๐๐๐๐๐ ๐ฃ ๐ฅ 10 = 0.2 x 4.5 = 0.4 atm Soln. 67(d) A(g) + B(g) โ C(g) + D(g) At=0 1 2 3 2 At equilibrium (1 โ x) (2 โ x) (3 + x) (2 + x) โด KC = 1 x 10 or, x = 0.1 x= Soln. 64(a) A + 2B โ At t = 0 1.1 2.2 At equilibrium (1.1 โ x) (2.2 โ 2x) Given 2x = 0.2 or, x = 0.1 ๐ถ [๐ท] ๐ด [๐ต] (3+x)(2 + x) 20(1 โ x)(2 โ x) = (3 + x)(2 + x) 20(2 โ 2x โ x + x2) = 6 +2x + 3x + x2 20(2 โ 3x + x2) = x2 + 5x + 6 or,19x2 โ 65x + 34 = 0 โต [SO3] = [SO2] โด 100 = 0.6 x 0.6 20 = (1 โ x)(2 โ x) [๐๐3 ]2 [๐๐2 ]2 x 0.2 x (๐๐ตโฒ ) 2 (๐๐ตโฒ 2 ) Total volume = V litre. Suppose number of moles of O2 = x, then โด 100 = = 4.5 โฒ (๐๐ด๐ต )2 or, 4.5 = Soln. 63(b) For reaction, 2SO2(g) + O2(g) โ 2SO3(g) ๐2 = 10 ๐ด๐๐ก๐๐ฃ๐ ๐๐๐ ๐ = (0.3)2 0.1 x 0.2 โฒ ๐ด 2 ) x (๐๐ต 2 ) (0.6)2 โ ฮฑ = 5 x 10-4 โด [I2]eq = 1 โ ฮฑ โ 1 and indicates, [I2(g)]eq> [Iโ(g)]eq ๐ฅ = When the volume is made half of the initial volume, (Kp remains unchanged) or, ฮฑ2 = 4 x 106 KC = 100 = (๐ ๐ด๐ต )2 1 1 2 ๐ด ) x (๐ ๐ต 2 ) 2C + D 0 0 2x x 65 ± (โ65)2 โ 4 x 19 x 34 2 x 19 = 65±40.5 38 x = 2.77 or, x = 0.64 2.77 is not possible because x > [A]initial Therefore, x = 0.64 Thus, the equilibrium concentration of B = 2 โ x = 2 โ 0.64 = 1.36 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 9 Solution of Chemical Equilibrium Soln. 68(d) Soln. 70(b) 2SO3(g) โ 2SO2(g) + O2(g) At=0 1 0 0 At equilibrium (1 โ 2x) 2x = 0.6 x 2x = 0.6 โด x = 0.3 [SO3]eq = 1 โ 2x = 1 โ 0.6 = 0.4 [SO2]eq = 0.6; [O2]eq = 0.3 โดK= [๐๐2 ]2 [๐2 ] [๐๐3 ]2 = (0.6)2 x 0.3 (0.4)2 = 0.675 Soln. 69(c) Suppose, the initial concentration of A is a mole/L. Then [B]initial = 3a A + 2B โ 2C + D At t = 0 a 3a 0 0 At equilibrium a โ x 3a โ 2x 2x x But, [A]equ = [C]equ โด a โ x = 2x or, a = 3x thus [A]equ = a โ x = 3x โ x = 2x [B]equ = 3a โ 2x = 3.3x โ 2x = 7x [C]equ = 2x [D]equ = x โด KC = [๐ถ]2 [๐ท] ๐ด [๐ต]2 (2๐ฅ)2 x ๐ฅ = 2๐ฅ x (7๐ฅ)2 4๐ฅ 3 = 98๐ฅ 3 = 0.04 Soln. 71(a) P Trans โ2โbutene P Cis โ2โbutene 0.290 Kp = = 0.085 = 3.4 Soln. 72(a) โrG๏ฐ = โrH๏ฐ โ T. โrS๏ฐ = โ 30 โ 300 × 0.1 = 0 โrG๏ฐ = โ 2.303 RT log K K=1 Soln. 73(d) Ptotal = 0.2 bar At equilibrium PCO 2 = PH 2 O = 0.1 bar Kp = (0.1)2 = 0.01 โrG๏ฐ = โ RT ln Kp = โ 8.314 × 420 in (0.01) = 16083.6 J / mol or 16.083 kJ / mol. Soln. 74(a) K = ๐ด๐๐ก๐๐๐๐ = ๐ด๐๐ก๐๐๐๐ โโ๐บ° 2.303 ๐ ๐ โ78×1000 2.303 ×8.314 ×1000 = 8.4 ๏ด 10 โ 5 Cool MCQ Level 2 Soln. 1(b) Concentration of [NO2] will decrease with increase in concentration [N2O4]. Soln. 2(b) โต PV = nRT or, p n = RT V = number of moles volume in litre = Active mass Soln. 4(c) Equilibrium constant KC = when concentration of [Ca2+] is increased by 4 times. To keep KC constant, the concentration of Fโ ions must be decreased to half of its original concentration. 4[Ca2+ ] โด Kc = Soln. 3(a) I: CaCO3(s) โ CaO(s) + CO2(g) ; ๐พ๐โฒ = ๐CO2 II: N2(g) + O2(g) โ 2NO(g) ; Kp = 1 2 III: H2(g) + O2(g) โ H2O(l) ; (P๐๐ )2 ๐๐ 2 . ๐๐ 2 1 ๐พ๐โฒ = ๐๐ป 2 .(๐๐ 2 )1/2 [๐ถ๐ 2+ ][๐น โ ]2 [๐ถ๐๐น2 ] [Fโ]2 (2)2 [CaF2 ] Soln. 5(d) Using the equation log (๐พ๐ )40 °C (๐พ๐ )25 °C = we get, log 4 = โ๐ป 1 2.303๐ ๐1 โ๐ป โ 1 ๐2 , 1 2.303 x 8.314 273 + 25 โ Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 1 273 + 40 . Page 10 Solution of Chemical Equilibrium โด โH = 71.67 kJ mol-1. K3 = Soln. 6(a) Kp = PCO 2 log ๐พ2 = ๐พ1 0.34 Suppose K = โ๐ป 1 2.303 ๐ ๐1 โ๐ป โ log 0.14 = 2.303 ×8.314 โต 1 ๐2 1 1 ๐พ2๐พ33 ๐พ1 โดK= โ 420 400 ๏H = 64 kJ / mol. Soln. 7(b) Soln. 8(a) According to vanโt Hoff equation: โ๐ป° log K = โ 2.303 ๐ Y= 1 โ๐° ๐ ๐ × + [๐๐]2 [๐ป2 ๐]3 [๐๐ป3 ]2 [๐2 ]5/2 [๐๐][๐ป2 ๐]3 [๐๐ป3 ]2 [๐2 ]5/2 ๐พ2 ๐พ33 ๐พ1 Soln. 14(a) Lesser the value of equilibrium constant, less favourable is the forward reaction and greater the stability of reactant. Soln. 15(a) ๏ดx +C M = [๐ป2 ๐] [๐ป2 ][๐2 ]1/2 1 When log K is plotted against ๐ , we get straight line โ๐ป° having slope equal to โ 2.303 ๐ . For exothermic reaction, slope of the line will be positive. QC = 6 2 2 2 4 3 2 2 = 9 8 Qc<Kc so reaction will proceed in forward direction. Soln. 16(d) At point โAโ, Q = tan 60๏ฐ = 1.732 ๏ Q = K. Soln. 9(a) โ๐ป° Slope = โ 2.303 ๐ โ๐ป° tan 45° = โ 2.303 ×8.314 ๏H๏ฐ = ๏ญ 2.303 ๏ด 8.314 = ๏ญ 19.14 J mol. โ 1 Soln. 10(a) Hg(ฦ) โ Hg (g) ๏ng = 1 Kp = 0.002 760 Soln. 17(b) ๏ng> 0, therefore by decreasing the pressure and by introducing inert gas at constant pressure, the equilibrium will shift in forward direction. = 2.63 × 10โ6 ๐๐ก๐. Kc = RTp = 0.0821 ×300 = 1.068 × 10โ7 ๐ Soln. 18(a) Reaction is exothermic, therefore, its yield will decrease with increase in temperature. Soln. 11(d) Soln. 19(b) Kp = Kc (RT)๏n K 2.63×10 โ6 Soln. 20(c) Soln. 12(c) Stability ๏ต๐ธ๐๐ข๐๐๐๐๐๐๐ข๐ 1 ๐๐๐๐ ๐ก๐๐๐ก ๐๐๐ ๐๐๐ ๐ ๐๐๐๐๐ก๐๐๐ Soln. 13(d) From given equations, We have, K1 = K2 = [๐๐ป3 ]2 [๐2 ][๐ป2 ]3 [๐๐]2 [๐2 ][๐2 ] Soln. 21(b) For ideal gas mole % = volume % N2O4(g) โ 2NO2(g) Initial moles a 0 At eqm. a(1 โ a) 2a๏ก As per given original volume Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 11 Solution of Chemical Equilibrium = 75 100 Soln. 24(b) × Volume at eqm 1 ๐ Kp = A + B โ C + At t = 0 1 1 0 At equilibrium 1 โ ฮฑ 1โฮฑ ฮฑ (ฮฑ = degree of dissociation) If total volume of the solution = V litres and [C] = [D] = or, K = โ ๐พ ๐ถ [๐ท] ๐ด [๐ต] ฮฑ ฮฑ x ๐ ๐ 1 โฮฑ 1โฮฑ x ๐ ๐ ฮฑ2 โด ๐พ 1+ ๐พ ๐ ๐ผ 2 1+ ๐ผ 3/2 ๐ 1/2 1โ๐ผ 2+๐ผ 1/2 โH โS =T= 30 x 10 3 60 = 500 K 20 โ 2.303 x 0.0831 x 300 = -logKC N2O4(g) โ 2NO2(g) At t = 0 1 0 At equilibrium (1 โ ฮฑ) 2ฮฑ Total mole at equilibrium = 1 โ ฮฑ + 2ฮฑ = 1 + ฮฑ PN2 O4 = XN2 O4 x P = )2 (PN2 O4 ) = 1+ฮฑ 2๐ผ P 1+2๐ผ 1 โฮฑ 1 +ฮฑ xP P โ 100.35 = 4๐ผ 2 P2 (1+ ๐ผ)2 x (1+ ๐ผ ) (1โ ๐ผ )P K๐ or, 1 x 0.35 = log log100.35 = log = 1 or, 0.35 = +log 1โฮฑ xP 1+ฮฑ 2๐ผ and PNO2 = XNO2 x P = 4๐ผ 2 ๐ (1โ ๐ผ 2 ) × ๐ 1/2 Soln. 27(c) โG = -2.303RT logKC Soln. 23(d) (PNO2 1โ๐ผ × Soln. 26(b) โต โG = โH โ TโS โG = 0 at equilibrium โH = 30 kJ = 30 x 103 J โS = 60 JK-1 (1 โ ฮฑ)2 ๐ผ = (1โ ๐ผ) โด Kp = ๐๐ป 2๐ 2 โ๐ ๐ ๐ Soln. 25(a) ๏G๏ฐ = ๏ญ nFE๏ฐ โฆ..(i) When E๏ฐ is negative, ๏G๏ฐ will be positive. ๏G๏ฐ = ๏ญ 2.303 RT log10 K โฆโฆ(ii) When ๏G๏ฐ is positive, then the value of K will be less than 1. โ ๐พ(1 โ ๐ผ) = ฮฑ โ ๐พโฮฑ ๐พ =ฮฑ โ ๐พ=ฮฑ+ฮฑ ๐พ โฮฑ= 1 ๐ผ ๏ก 1/2 ๐ป 2 ×๐ ๐ 2 ๐ผ 1/2 ๐ผ× 2 = ๐ then, equilibrium constant K = or, K = = D 0 ฮฑ 1โฮฑ ฮฑ ๐ 1 ๏ญ๏ก teq. Soln. 22(a) then, [A] = [B] = 3 ๐ป2 ๐ ๐ โ ๐ป2 ๐ + 2 ๐2 ๐ โ๐๐ = 2 โ 1 = 2 at constant T and P: V ๏ต n ๏ a = 0.75 × a (1 + a) ๏๏ก = 0.33 = 1 K๐ (log10 = 1) 1 K๐ 1 K๐ โ KC = 10-0.35 โ0.46 Soln. 28(d) โG° = -2.303RT logKC -3000 = -2.303 x 2 x 300 logKC or, 3 x 10 3 2.303 x 2 x 300 = logKC or, 2.171 = logKC Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 12 Solution of Chemical Equilibrium or, 2.171 x 1 = logKC or, 2.171 log10 = logKC or, log102.171 = logKC or, KC = 102.171โ 102.2 Soln. 36(c) Soln. 29(a) ๏G๏ฐ = ๏ญ 2.303 RT log10 KP = ๏ญ 2.303 ๏ด 8.314 ๏ด 298 log (6.1 ๏ด 10 โ 5) = + 24048 J / mol. = + 24 kJ / mol. Soln. 37(a) For association of molecules, Soln. 30(a) ๏G๏ฐ = ๏ญ 2.303RT log10K = ๏ญ 2.303 ๏ด 8.314 ๏ด 298 log (4.42 ๏ด 104) = ๏ญ 26506 J mol. โ 1 = ๏ญ 26.5 kJ / mol. ๐๐ ๐ = 57.47 ๐ 99โ57.47 = 0.72 57.47 MO = ๏ก= ฮฑ= ๐ท๐ โ ๐ท๐ ๐ท๐ 1โ 1๐ where n = number of molecules which associate to form a big (associated) molecule for dimerisation n = 2 ฮฑ= ๐ท๐ โ ๐ท๐ ๐ท๐ 1โ 12 =2 ๐ท ๐ โ ๐ท๐ ๐ท๐ Soln. 38(a) Lesser is the percentage dissociation; greater is the vapour density. Soln. 31(a) Soln. 32(a) Soln. 33(a) K= ๐ต ๐ถ ๐ด = 0.15×0.05 1×10 โ3 = 7.5 ๏G๏ฐ = ๏ญ 2.303RT log10 K = ๏ญ 2.303 ๏ด 8.134 ๏ด 298 log 7.5 = ๏ญ 4992 J mol. โ 1 = ๏ญ 5 kJ mol. โ 1 Soln. 39(d) The reaction is: N2O4โ 2NO2 (g) 20 n = 2 and ๏ก = 100 = 0.2 D = 4.6, initial vapour density d = vapour density at equilibrium ๏ก= ๐ทโ๐ ๐โ1 ๐ 46โ๐ 0.2 = 2โ1 ๐ Soln. 34(c) Average kinetic energy depends only on temperature, Since, both (liquid or vapour) phases are at same temperature. Thus, average kinetic energy of molecules in both the phases will equal. d = 38.3 Molar mass equilibrium = 2 ๏ด 38.3 = 76.6 Pm = dRT Here, d = density of gas mixture Soln. 35(a) Soln. 40(a) ๐๐ โ๐๐ ๐โ1 ๐๐ 92โ ๐๐ 0.2 = ๐๐ ๏ก= ๏ RT 1×76.6 = 0.0821 ×300 = 3.12 ๐/๐ฟ Soln. 42(b) Kc = dmixture= = Pm Soln. 41(d) ๏ MO = 76.66 ๐๐ ๐๐๐ฅ๐ก๐ข๐๐ ๐ ๐ 1 ×76.66 = 3.11 0.821 ×300 d(mix) = g / litre. ๐ ๐ต ๐ ๐ถ3 ๐ ๐ด2 × 1 ๐2 2 × 23 23 × ๐ 2 1 2 ๏ 16 = ๏V= Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 13 Solution of Chemical Equilibrium Soln. 43(b) H2(g) + CO2(g) โ H2O(g) + CO(g) Moles of eqn. 0.8 โ x 0.8 โ x x x Conc. at eqm 0.8โ๐ฅ 0.8โ๐ฅ 5 5 ๐ฅ 5 ๐ฅ 5 โต โng = 0 ๏2= ๏PNO 2 = 0.02 ๏ x = 0.533 0.8โ0.533 5 Soln. 48(c) Soln. 44(a) H2(g) + S(s) โ H2S(g) 0.5 โ x โ x Conc. at eqn. Kc = ๐ป2 ๐ ๐ป2 ๏ 7 × 10 โ 2 = n H 2S V 0.0821 ×1000 1/4 2 Kc = 0.5 4 = 256 0.5 2 4 1 3 2 K1c RT Soln. 45(d) Moles of CO2 present at equilibrium = Initial moles At eqm Where x = 0.5 NH3(g) โ N2(g) + H2(g) = 0.0327 × 0.0821 × 360 = 0.966 1.642 ×50 N2(g) + 3H2(g) โ 2NH3(g) 1 2 0 1โx 2 โ 3x 2x equilibrium constant for the reaction ๐ฅ 0.5โ๐ฅ ๏ x = 0.0327 PH 2 S = 0.5 2 0.25 2 ๐๐๐ 2 ๏ 156.25 = ๐ฅ 0.8โ๐ฅ [CO2(g)] = 2๐ฅ 2 ๐ฅ ๐โ2๐ฅ 2 Kp = ๐ฅ 2 5 0.8โ๐ฅ 2 5 ๏Kc = Soln. 47(b) Let P is initial pressure of NO2 2NO2(g) โ 2NO(g) + O2(g) At eqm. Pโx 2x x As per given x = 0.25 =1 1 = ๐พ๐ 2 1 = 16 Soln. 49(b) NH4COONH2(s) โ 2NH3(g) + CO2(g) 2 3 1 ๐3 ๐ 2 Kp = ๐NH ๐ = 3 CO2 2 3 ๐2 1 3 ๐ = 4 3 ๐ 27 4 Mole % of XCO3 decomposed 1 4 = × 100 = 25% Hence, 75% remains undecomposed. = 27 x (2)3 = 1.185 Soln. 50(a) For the equilibrium, 1 2 H2O(g) โ H2(g) + O2(g) Soln. 46(c) 3 1 AB3(g) โ AB2(g) + B2(g) 2 At eqn. 800 โ x x x/2 ๐ฅ 800 โ x + x + = 900 ๏ x = 200 2 % dissociated = 200 800 × 100 = 25% Kp = 1 ๐ผ 2๐ 2 2 p = 1 atm. ฮฑ = ( 2 · ๐พ๐ ) 2 3 = 0.0205 โ 2%. Soln. 51(b) XY2(g) โ At t = 0 600 mm At equilibrium (600 โ P) mm According to question 600 โ P + P + P = 800 600 + P = 800 XY(g) + Y(g) 0 0 P mm P mm Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 14 Solution of Chemical Equilibrium โด P = 200 mm (Pxy2 )eq = 600 โ 200 = 400 mm Soln. 54(c) (Pxy)eq = 200 mm (Py)eq = 200 mm Equilibrium constant = K = Pxy x Py Pxy2 200 x 200 = 400 = 100 Soln. 52(d) Given PCH3 OH = 2 atm, PCO = 1 atm and PH2 = 0.1 atm โด Kp = PCH3 OH PCO x (PH )2 2 = 2 1 x (0.1)2 = 200 โด Equilibrium constant for decomposition reaction (reverse reaction) CH3OH(g) โ 2H2(g) + CO(g) is ๐พ๐โฒ = 1 ๐พ๐ = 1 200 A2(g) + B2(g) โ 2AB(g) At t = 0 a (100 โ a) 0 At equilibrium (a โ x) (100 โ a โ x) 2x Given [A2]eq = [AB]eq โด a โ x = 2x or, a = 3x Thus [A2]eq = a โ x = 2x [B2]eq = 100 โ a โ x = 100 โ 4x [AB]eq = 2x [๐ด๐ต]2 KC = [๐ด2 ][๐ต2 ] โด 100 = 4x2 (2x)(100 โ 4x) โ (100)·2x(100 โ 4x) = 4x2 โ 20000x โ 800x2 = 4x2 โ 20000x = 804x2 โ 20000 804 Soln. 55(b) PNH 3 = PH 2 S 2 ๏ Kp = PNH 3 2 64 = PNH 3 PNH 3 = 8 atm. Total pressure = PNH 3 + PH 2 S = 8 + 8 = 16 atm. = 5 x 10-3 atm2 Soln. 53(d) โด 2NH3(g) โ N2(g) + 3H2(g) At t = 0 2 0 0 At equilibrium (2 โ 2x) x 3x x = 27% = 0.27 โด [NH3]eq = 2 โ 2 x 0.27 = 1.46 [N2]eq = x = 0.27 [H2]eq = 3x = 3 x 0.27 = 0.81 = x2 โ x = 24.87 โด [B2]eq = 100 โ a โ x = 100 โ 4x [B2]eq = 100 โ 99.50 [a = 3x] [B2]eq = 0.50 Soln. 56(c) A2 (g) + B2 (g) โ 2AB (g) t0 2 4 0 2โ๐ 4โ๐ 2๐ teq. 4 4 4 AB 2 Kc = 4= A2 B2 2x 2 4 2โ๐ฅ 4โ๐ฅ 4 4 4x 2 4 = x 2 โ6x+8 x 2 โ 6x + 8 = x 2 8 4 x=6=3 (AB) = 2๐ฅ 4 2 4 = 4 × 3 = 0.66 Soln. 57(c) C (g) + D (g) โ A (g) + B (g) t0 1 1 1 1 teq. 1 ๏ญ๏ก 1 ๏ญ๏ก 1+๏ก 1+๏ก 4= 2= 1+ฮฑ 2 1โฮฑ 2 1+๐ผ 1โ๐ผ 2 ๏ญ 2๏ก = 1 + ๏ก 1 ๏ก = 3 = 0.33 [A] = 1+๐ผ 10 = 1+0.33 10 = 0.133 ๐ Soln. 58(b) Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 15 Solution of Chemical Equilibrium Soln. 59(a) N2 (g) + 3H2 (g) โ 2NH3 (g) t0 1 3 0 teq. 1 โ 0.5 3 โ 1.5 1 ๏n = 0.5 + 1.5 + 1 = 3 PNH 3 = xNH 3 × P 1 P = 3×P = 3 Soln. 66(c) SO2(g) + NO2(g) โ SO3(g) + NO(g) Initial moles 2 2 2 2 At eqm 2โx 2โx 2+x 2+x Total no. of moles of gases at equilibrium = 8 + 2 = 10 ๐ ๐๐ 3 .๐ ๐๐ Soln. 60(b) Kp = ๐ Soln. 61(b) ๏ 25 = ๏5= Soln. 62(a) pNH3 = pH2S = 0.33 atm. K p = pNH 3 × pH s S ๐๐ 2 .๐ ๐๐ 2 2 2+๐ฅ ×๐ 10 2 2โ๐ฅ ×๐ 10 2+๐ฅ 2โ๐ฅ ๏ x = 1.33 = 0.33 ๏ด 0.33 = 0.109 atm.2 Partial pressure of NO2 = = 0.666 10 2โ๐ฅ 10 ×2 Soln. 63(b) = 0.133 atm Soln. 64(a) Soln. 67(a) 2AB(s) โA2(g) + B2(g) 0.5 + x x KP = PA 2 . PB 2 2NOBr(g) โ 2NO(g) + Br2(g) Initial pressure P 0 0 At eqm P โ 2x 2x x where 2x = 0.40 P ๏ x = 0.20 P ๏ 1.20 P = 0.30 ๏ P = 0.25 atm Kp = = ๏ 0.06 = (0.5 + x)x = x2 + 0.5x โ 0.06 ๏ x = 0.1 Ptotal = PA 2 + PB 2 = 0.6 + 0.1 = 0.70 atm 2 .๐ ๐๐๐ ๐ต๐ 2 2 ๐๐๐๐ต๐ 0.4๐ 2 0.2๐ 0.6๐ 2 = 0.0222 ๏Kp for the reaction 2NO(g) + Br2(g) โ 2NOBr(g) 1 is0.0222 = 45 Soln. 68(a) Sb2S3(s) + 3H2(g) โ 2Sb(s) + 3H2S(g) 0.01 โ x 0.01 โ 3x 2 x 3x where 3x = 0.005 H2S + Pb2+ โ PbS + 2H+ no. of moles of PbS formed = Soln. 65(c) โต Initially only A is present so at eqm B and C should be present in 2:1 2A(g) โ 2B(g) + C(g) At eqm 400 mL 200 mL 100 mL For ideal gases volume % = mole % Kp = × Ptotal 2 100 200 ×10 ×10 700 700 2 400 ×10 700 1.19 238 = 0.005 mole At eqm [H2] โ Kc = 0.005 3 0.005 0.005 25 ; =1 10 = 28 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 16 Solution of Chemical Equilibrium At eqm 0.1 โ x a โ x Soln. 69(b) Kc = ๏ ๐๐๐๐๐๐๐ฅ ๐ป3 ๐ต๐3 ๐๐๐ฆ๐๐๐๐๐ ๐๐๐๐๐๐๐ฅ 80 ๐ป3 ๐ต๐3 = 0.90 x = 0.1 × 100 = 0.08; = 4.44 M a โ x = 4.44 ๏ a = 4.44 + 0.08 = 4.52 M or Initial moles = 4.52 = 20 ๏ [glycerin] = x 80 80 20 ×0.9 H3BO3 + glycerin โ (H3BO3 โ glycerin) Cool MCQ With More Than One Correct Option Soln. 1(b, c, d) Soln. 7(a, b, c, d) Soln. 2(a, b, c, d) Soln. 8(a) Soln. 3(a, b, c, d) Soln. 9(b, c, d) Soln. 4(a, b) Soln. 10(a, b) Soln. 5(a, b, c) Soln. 11(a, c) Soln. 6(a, c, d) Soln. 12(a, b, c) Soln. 13(a, d) MCQ Handle With Cool Brain Soln. 1c) Use vanโt Hoff equation. Soln. 3(a) Soln. 2(a) For the reaction, CaCO3 (s) โ CaO(s) + CO2 (g); K = PCO 2 โ๐ป° 1 We know log10 K = log10 A โ 2.303 ๐ × ๐ โ๐ป° 1 log10 PCO 2 =log10 A โ 2.303 ๐ × ๐ The reaction is endothermic, therefore, log10 PCO 2 will linearly decrease with increase in the value of 1 ๐ . Soln. 4(d) Reaction: 2A + B โ C + D n ×n n B A โn g P Kp = n C2 ×nD × ๏ng = 2 โ 3 = ๏ญ 1 n ×n Kp = n C ×nD A B n P โฆ..(i) PV = ๏nRT ๐ ๐ ๐ = n P โฆ . (ii) From eqn. (i) and (ii) Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 17 Solution of Chemical Equilibrium n ×n V Soln. 10(c) C2H5OH(l) + CH3COOH(l) โ CH3COOC2H5(l) + H2O At t=0 1 1 0 0 At equilibrium 1/3 1/3 2/3 2/3 Kp = n C ×nD × RT A B Soln. 5(a) pNH3 = pH2S = 20 = 10 ๐๐ก๐. 2 Kp = pNH3๏ด pH2S = 100 atm.2 Kp = Kc (RT)๏n 100 = Kc (0.0821 ๏ด 400)2 Kc = 0.092 M2 Soln. 6(a) C(s) + CO2(g) โ 2CO(g); โฆ.(1) 14 KP1 = 10 atm 2CO(g) + 2Cl2(g) โ 2COCl2(g); KP2 = (6 × 10 โ 3)2 atm โ 2 Add (1) and (2) C(s) + CO2(s) + 2Cl2(g) โ 2COC2(g); KP = 1014 × 36× 10โ6 = 36 × 108 For given reaction โng = โ 1 ๏ Kc = Kp(RT) = 36 × 108 × 0.0821 × 1120 Kc = 3.31 × 1011 M โ 1 Kc = [๐ถ๐ป3 ๐ถ๐๐๐ถ2 ๐ป5 ][๐ป2 ๐] [๐ถ2 ๐ป5 ๐๐ป][๐ถ๐ป3 ๐ถ๐๐๐ป] = 2/3 x 2/3 1/3 x 1/3 =4 โต โG = -2.303RT logKC โด โG = -2.303 x 8.314 x 298 x log4 โ -3435 J Soln. 11(a) ๐๐บ ๐ฅ ๐๐บ ๐ธ๐ = โG (minimum) ๐,๐ โฆ.(2) Soln. 12(b) Soln. 13(d) ฮฑ= ๐TH โ ๐obs ๐obs (๐โ1) Molar mass of N2O4 = 92 g mol-1. Here, n = 2. ฮฑ= 92.00 โ 77.70 77.70(2 โ 1) = 0.184 = 18.4%. Soln. 14(c) Soln. 7(c) Kp, Kc are independent of pressure but Kx is related to pressure. ๐ท๐ โ ๐ท๐ (๐โ1)๐ท ๐ ฮฑ= Soln. 15(d) Molecular mass 2 Soln. 8(b) N2(g) + 3H2(g) โ 2NH3 + Q cal Since, the preparation of ammonia is an exothermic reaction. Thus, the % yield will be increased, as the temperature decreases. โด (DT )NH3 = Soln. 9(c) For dissociation of molecule (n = 2, because 1 molecule of NH3 gives 2 molecules of N2 + H2) ๐ผ= = ๐โ๐ท 1 ๐ ๐ 1โ 2 ๐โ๐ท ๐ = We know that vapour density = 17 2 = 8.5 Vapour density of gaseous mixture (VD) = 4.5 โดฮฑ= ๐ท ๐ โ ๐ท๐ ๐ท ๐ (๐โ1) = 8.5โ4.5 4.5 x (2 โ 1) = 4.0 4.5 = 89% ๐ โ๐ท 1 2 ๐ 1โ Soln. 16(d) NH2๏พ COONH4๏ฎ 2NH3 (g) + CO2 (g) D= ๏ก= ๐๐ค = 2 ๐ทโ๐ ๐โ1 ๐ 79 2 = = 39 39โ13 3โ1 13 =1 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 18 Solution of Chemical Equilibrium Soln. 17(d) ๏ก= M 0 โM Soln. 22(c) 92โ77.7 ๐ ๐๐๐ฅ = (2โ1)×77.7 0.184 nโ1 M ๐๐2 % dissociation = 18.4 32 = ๐ ๐๐๐ฅ ๏ Mmix = 40 g / mol O2(g) โ Soln. 18(a) ๏ก= ๐ทโ๐ Initial moles ๐โ1 ๐ 40โ๐ 0.5 = 1.5โ1 ๐ 32 40 ๐ ๐โ1 ๐ ๐ทโ๐ 3 ๏ก 1 ๐ทโ๐ = ๐โ1 ๐ ๐ท ๐ทโ๐ 2โ1 ๐ ๐ท Thus, (1 + ๏ก) will linearly increase with increase in ๐ . 3Se2(g) โ Se6(g) ๐๏ก a (1โ ๏ก) 3 Moles at eqm ๐๐๐ ๐๐๐ฃ๐๐ ๐๐ .๐๐ ๐๐๐๐๐ ๐๐ก ๐๐๐ข๐๐๐๐๐๐๐ข๐ ๐ผ๐๐๐ก๐๐๐ ๐๐ .๐๐ ๐๐๐๐๐ ๐๐ ๐๐๐๐๐ก๐๐๐ ๐๐ผ ๐ 1โ ๐ผ + 3 ๐ ๐ = ๐๐ ๐ ๐๐ = ๐ = ๏ก = 0.315 (MO) = ๐ค๐ ๐ ๐๐ Soln. 24(d) For reaction, 2A+(aq) + B(s) โ B2+(aq) + 2A(s) At equilibrium n2 n1 โด Equilibrium constant Kc = Kc = = 1 ×2.463 × 10 โ3 = 200 [๐ด2+ ]22 โ Kc x = ๐1 (๐ 2 )2 ([A+] = n2 [B+]1 = n1) n2 4 = [๐ต 2+ ]2 n2 2 2 = [B2+]2 ๐พ๐ x n2 [๐ต 2+ ]1 n1 = = 4 4 4 n n 1 2+ [๐ต ]2 = which is less than 1 4 3 [B2+]2 = 6HCHO โ C6H12O6 ๐ถ๏ก ๏ก (1 โ a) Conc. at eqm ๐๐๐ ๐๐๐ฃ๐๐ ๐๐๐๐๐ ๐๐๐๐๐๐๐ก๐๐๐ก๐๐๐ ๐ผ๐๐๐ก๐๐๐ ๐๐๐๐๐ ๐๐๐๐๐๐๐ก๐๐๐ก๐๐๐ ๐ 30 = ๐ ๐ = 150 ๐ or, 6 = ๐๐ ๐๐ MT = Theoretical molar mass of HCHO ๏ ๏ก = 0.96 [๐ต 2+ ]2 0.02 ×24.63 Soln. 21(d) ๐ถ๐ผ + 6 [๐ต 2+ ]1 [๐ด + ]21 or, n1 = Kc xn22 or, [B2+]1 = Kc x n22 when volume of the solution is made three times then ๐ where molar mass of Se2 (MT) = 79 × 2 = 158 and molar mass of mixture ๐ถ 1โ๏ก (1 + ๏ก) = ๐ 2โ1 ๐ Soln. 20(b) ๐ถ 1โ ๏ก 0 2 2 1โ๏ก+ ๏ก 3 = ๏ก= =1 ๏ O3(g) Soln. 23(a) PCl5 (g)โ PCl3 (g) + Cl2 (g) ๐ทโ๐ At โAโ, ๏ก = 0 ๐ท 3 ๏ ๏ก = 0.6 ๏ % ๏ก = 60 Soln. 19(c) ๏0= 2 1 At eqm 0.5 ๏ด 0.5d = 40 โ d 1.25d = 40 d = 32 ๏ก= = 0.4 5 Soln. 25(b) N2O4 (g) โ 2NO2 (g) At t = 0 1 0 At equilibrium (1 โ 0.2) = 0.8 2 x 0.2 = 0.4 P1 = 1 atm ; P2 = ? n1 = 1 ; n2 = 0.8 + 0.4 = 1.2 T1 = 300 K ; T2 = 600 K โต PV = nRT for constant volume P1 P2 = n1 T1 n2 T2 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 19 Solution of Chemical Equilibrium โดP = 1 x 300 1.2 x 600 or P2 = 2.4 atm 1 2 = ๏ PV = nRT ๏ 3 × 5 = n × 0.0820 × 310 ๏ n = 0.59 i.e. (a โ 0.2) = 0.59 ๏ initial moles of NH3 = 0.79 1 2.4 Soln. 26(a) K= Soln. 30(c) NH2COONH4(s) โ 2NH3(g) + CO2(g) Let partial pressure at equilibrium of CO2 be P, then PNH 3 = 2P and total pressure at equilibrium = 3P Kp = (2P)2 × P = 4P3 โฆ.(1) If NH3 is added and the pressure of NH3 after addition at equilibrium is 3P โ RNH + 3 ๐๐ป 8 ๏ด 10 ๐ ๐๐ป2 ๐ฅ×๐ฅ โ6 = 0.5 x = 2 ๏ด 10 โ 3 [OH โ ] = 2 ๏ด 10 โ 3 M pOH = ๏ญ log 2 ๏ด 10 โ 3 = 2.7 ๏ข ๏PCO =9 ๐ 2 ๏ข ๐๐ถ๐ 2 ๏ ratio of ๐ Soln. 28(d) Ptotal = PHNO 3 + PNO 2 + PH 2 ๐ + PO 2 โต PNO 2 = 4PO 2 and PH 2 O = 2PO 2 = Kp = =4 7 4 ๐๐๐ ๐ .๐ 4. ๐ป 2๐ ๐2 4 ๐๐ป๐๐ 3 4 4 ×4 × 2 ×4 2 ×4 24 Kp = Kc RT ๏ Kc = 220 32 3 โn g x= = 220 ๐๐ถ 2 ๐ป 6 โ ๐ฅ2 1โ๐ฅ = 5 × 10 โ 2 โ0.05+ 0.05 2 + 4 ×0.05 2 = 0.20 atm 0.8 ๏ mole % of C2H6 = 1.2 × 100 = 66.66 1 ๐พ๐๏ข = 9 ๐๐ก๐ โ2 Let initial moles of NH3 is a for completion of reaction. 1 ๐๐ป 3 ๐ ๐ถ 2 ๐ป 4 .๐ ๐ป 2 Partial pressure of C2H6 = mole fraction × total pressure ๏ 0.80 = mole fraction × 1.2 = Kc (0.08 × 400)3 = 32. ๐พ๏ข C2H6(g) โ C2H4(g) + H2(g) 1โx x x x2 + 0.05x โ 0.05 = 0 Soln. 29(d) LiCl. 3NH3(s) โ LiCl. NH3(s) + 2NH3(g) [Kp = 9 atm2] Therefore, LiCl. NH3(s) + 2NH3(g) โ LiCl. 3NH3(s); Initial moles 0.1 a 0 Final moles at eqn. 0 (a โ 0.2) 0.1 At eqn K๏ขp = 4 =9 At eqm ๏ 30 โ 2 =PO 2 × 7 Kp = ๐ถ๐ 2 Soln. 31(c) ๏ Ptotal =PHNO 3 + 7PO 2 28 ๏ข × ๐๐ถ๐ 2 4 Soln. 27(b) ๏PO 2 = 2 ๏ข Kp = 4P3 = ๐๐๐ป 3 1 2 ๐๐ 9 = Soln. 32(b) 2SO2(g) + O2(g) โ 2SO3(g) Kc = 0.12 2 0.12 2 ×5 = 0.2 Another vessel Moles of eqm 2SO2(g) + O2(g) โ 2SO3(g) 0.5 โ 2x y โ x 2x 20 As per given 2x = 100 × 0.5 = 0.1 Kc = 0.1 2 0.4 2 ๐ฆโ0.05 = 0.20 y = 0.3625 mole ๏ mass of O2 added = 11.6 g 1 ๐๏ข 2 ๐๐ป 3 ๏ข ๏PNH = 3 atm 3 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 20 Solution of Chemical Equilibrium Soln. 33(b) Let initial mole of N2O4(g) is one N2O4(g) โ 2NO2(g) Initial moles 1 0 At equilibrium 1 โ ๏ก 2๏ก Total no. of moles at equilibrium = 1 + ๏ก PN 2 O 4 = PNO 2 = 1โ ๏ก 1+๏ก 2๏ก ×P 2 ๐๐๐ 2 Hence, Kp = ๐ ๏ 4.5 = 4 ๏ก2 1โ ๏ก2 ๐2๐4 = 4๏ก2 1โ ๏ก2 ×๐ ×2 1โ๏ก XN 2 O 4 = 1+๏ก = 0.25 ๏XNO 2 = 0.75 Average molar mass of mixture = 0.25 × 95 + 0.75 × 46 = 57.5 Soln. 34(a) 2A(g) + B(g) โ C(g) + D(g) Initial moles 1 1 7 3 At eqm 2 โ 2x 1 โ x 7+x 3+x Due to very high value of Kc we can assume that reactant almost converted into products so 1 โ x = y; 2 โ 2x = 2y ๏ x โ 1 8 ×4 2๐ฆ 2 ๐ฆ ๏ y3 = 8 × 10 โ 12 ๏ equilibrium concentration of A = 2y = 4 × 10 โ 4 Soln. 35(c) 2SO3(g) โ 2SO2(g) + O2(g) Moles at eqm 1 โ 2x 2x x Only SO2 (O.No. = 4) will oxidized so equivalent of SO2 = equivalent of KMnO4 2x × 2 = 0.2 × 5 ๏ 2x = 0.5 Kc = 0.5 2 0.5 2 2 0.5 2 2 = ๐๐ ๐ 2 ๐ ๐๐ 2 ๐ ๐๐๐ฅ 64 ๏ 2.56 = ๐ ๐๐๐ฅ ๏ Mmixture = 25 Let mole fraction of F2 is x 38 ×๐ฅ+ 1โ๐ฅ ×19 1 x = 0.315; ๏๏ก = 0.6 Mole fraction of N2O4: 1012 = ๐ ๐๐๐ฅ 25 = ×๐ 1+๏ก Soln. 36(d) = 0.125 ๐2 ๏ Kp = ๐ ๐น = ๐น2 0.685๐ 2 0.315 ๐ โ 1.49 atm Soln. 37(b) ๐ฅ2 8 × 10 โ 6 = 0.5 ๏ x = 2 × 10 โ 3 ๏ pOH = 2.7 So, pH = 11.3 Soln. 38(d) N2O5(g) โ N2O3(g) + O2(g) 4โx xโy x+y N2O3โ N2O + O2 xโy y y+x โต [O2] = x + y = 2.5 and 2.5 = ๐ฅ+๐ฆ ๐ฅโ๐ฆ 4โ๐ฅ ๏ x = 2.166 [N2O5] = 4 โ x = 1.846 Soln. 39(b) Let x is partial pressure of A and y is partial pressure of C when both equilibrium simultaneously established in a vessel X(s) โ A(g) + 2B(g) X (2x + 2y); 2 K P 1 = PA . PB(total ) Y(s) โ C(g) + 2B(g) Y (2y + 2x); K p 2 = PC . PB2(total ) ๐พ๐ 1 ๐พ๐ 2 ๐ฅ = ๐ฆ ๏ x = 2y KP1 = x(2x + 2y)2 ๏ x = 0.1 atm ๏ y = 0.05 atm Total pressure of gases = PA + PB + PC Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 21 Solution of Chemical Equilibrium 10 โ6 = 3 (x + y) = 0.45 atm = 0.5 × Soln. 40(c) โrG๏ฐ = 0 โ 77.1 × 2 = โ 154.2 kJ / mol โrG = โ 154.2 + Q=๐ ๐ป+ 10 โ10 = 2 × 104 โG = โrG๏ฐ + RT ln Q 8.314 × 300 ln 2 × 10 4 1000 = โ 129.5 kJ / mol 2 + 2 ๐ป 2 . ๐ด๐ Cool Assertion Reason Soln. 1(b) Catalyst alters the rate of reaction. In reversible reaction, the rate of forward and backward reactions is affected equally. Thus, catalyst does not alter the position of equilibrium. Soln. 2(b) โG = โG๏ฐ + RT loge Kc At equilibrium, โG = 0 ๏ โG๏ฐ = โ RT loge Kc Soln. 3(c) N2(g) + 3H2(g) โ 2NH3(g) 1 2 3 N2(g) + 2 H2(g) โ 2NH3(g) K1 = K2 = ๐๐ป3 2 ๐2 ๐ป2 3 ๐๐ป3 ๐2 1/2 ๐ป2 1/2 1/2 K1 K2 = Thus, equilibrium constant changes stoichiometric coefficient of the reaction. with the Soln. 4(c) When Qc < Kc, then the reaction will be fast in forward reaction. Thus, statement โ 2 is wrong. Soln. 5(d) For the reaction: PCl5(g) โ PCl3(g) + Cl2(g) the equilibrium will change by changing the volume of vessel but the equilibrium constant Kc will be unaffected. Soln. 6(b) PCl5(g) โ PCl3 + Cl2(g) โng > 0, volume4 of vessel is not constant. Thus, addition of inert gas will shift the equilibrium toward higher volume direction i.e., in forward direction. Soln. 7(d) A+BโC+D C+DโA+B K1 K2 1 K2 = ๐พ i.e. equilibrium constant will be reciprocated 1 when the reaction is reversed. Cool Comprehension Based Problems Paragraph โ 1 Paragraph โ 2 Soln. 1(b) Soln. 1(c) Soln. 2(a) Soln. 2(a) Soln. 3(c) Soln. 3(b) Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 22 Solution of Chemical Equilibrium Paragraph โ 3 Soln. 4(c) Soln. 1(a) Soln. 5(a) Soln. 2(b) Soln. 3(a) Soln. 4(b) Soln. 5(c) Soln. 6(a) Cool Matrix Match Type Problems Soln. 1(a โ q) (b โ p, r) (c โ r) (d โ s) Soln. 2(a โ q, s) (b โ p, r) (c โ q, r) (d โ p, s) Soln. 3(a โ p) (b โ q) (c โ r) (d โ s) Soln. 4(a โ p, q, s) (b โ q, r) (c โ q) (d โ p, s) Soln. 5(a โ s) (b โ p) (c โ q) (d โ r) Soln. 6(a โ s) (b โ p) (c โ q) (d โ r) Soln. 7(a โ s) (b โ q, r) (c โ q) (d โ p) Soln. 8(a โ p, r , s), (b โ q, r), (c โ q, r), (d โ q, r) Soln. 9(a โ s) (b โ p) (c โ q) (d โ r) Cool Single Digit Type Problems Soln. 1 2HI(g) โ H2(g) + I2(g) Kc = 0.25 For: H2(g) + I2(g) โ 2HI(g) 1 Kc = 0.25 = 4 Soln. 2 A(g) + B(g) โ C(g) + D(g) t0 4 4 0 0 teq 4 โ 2 4 โ 2 2 2 Kc = ๐ถ ๐ท ๐ด ๐ต 2 ×2 = 2 ×2 = 1 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 23 Solution of Chemical Equilibrium x = 5 atm Total pressure of equilibrium = 1 + 5 + 2 = 8 atm Soln. 3 AB(g) โ A(g) + B(g) 1 0 0 t0 1 1โ3 teq Kp = = ๐ ๐พ๐ ๐๐ด × ๐ ๐ต ๐ ๐ด๐ต 1 1 × 3 3 2 3 × × ๐ ๐ 1 1 3 โ๐ ๐ 3 2 1 1 4 ๏n = 3 + 3 + 3 = 3 ๐ 1 4/3 Soln. 7 PCl5(g) โ PCl3(g) + Cl2(g) Kp = 1 =6× 3๐ 4 ๐ =8 = ๐ ๐๐ถ๐ 3 × ๐ 2 ×2 2 ๐ถ๐ 2 ๐ ๐๐ถ๐ 5 × 3 1 6 × ๐ โ๐ ๐ ๐ =1 =8 Soln. 4 Equilibrium constant does not change on changing the concentration of reactants. Soln. 5 A(g) + B(g) โ C(g) + D(g) t0 a a 0 0 teq a โ x a โ x x x x = 2(a โ x) 3x = 2a 2 x=3a 2 1 [A] = [B] = ๐ โ 3 ๐ = 3 ๐ 2 [C] = [D] = 3 ๐ Kc = ๐ถ ๐ท ๐ด ๐ต 2 2 3 1 ๐× ๐ 3 3 = 31 ๐× ๐ =4 Soln. 6 SO2Cl2(g) โ SO2(g) + Cl2(g) 1 atm x atm 2 atm Kp = ๐ฅ ×2 1 Soln. 8 NH4Cl(s) โ NH3(g) + HCl(g) Kp = PNH 3 × PHCl 81 = p2 p = 9 atm Total pressure = pNH 3 × pHCl = 18 atm Thus, total pressure is 2 times the pressure of NH3. Soln. 9 PV = nRT 1 × 8.96 = n × 0.0821 × 473 n = 0.23 NH2COONH4(s) โ 2NH3(g) + CO2(g) nNH 2 COONH 4 = 0.23 3 Mass of NH2COONH4 = 0.0767 × 74 ๏ป 6g Soln. 10 โG๏ฐ = 2.303 RT log10Kp When Kp = 1, โG๏ฐ = 0 =10 Cool Previous Year Problems IITJEE / IIT ADVANCE Soln. 1(d) MX Let s be the solubility of MX + โ MX โ M + ๐ S × s = Ksp of MX = 4 × 10 โ 8 MX2 MX2 โ M + 2 + 2 ๐ โ Ksp of MX2 = x × (2x)2 = 3.2 × 10 โ 14 4x3 = 32.0 × 10 โ 15 x3 = 8 × 10 โ 5 x = 2.0 × 10 โ 5 mol / litre For M3X โ 3M + 1 + ๐ โ 3 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 24 Solution of Chemical Equilibrium Ksp of M3X = x × (3x)3 = 27x4 = 2.7 × 10 โ 15 27x4 = 27 × 10 โ 16 x4 = 10 โ 16 x = 1 × 10 โ 4 mol / litre 2.4 × 10 โ 4 > 1.0 × 10 โ 4 > 2.0 × 10 โ 5 MX > M3X > MX2 Soln. 4(b) N2 + 3H2 โ 2NH3 At equilibrium, addition of a reactant or any catalyst has no effect. However, the catalyst brings the equilibrium faster by increasing both forward and backward reactions. Soln. 2(c) During neutralization of mass acidic base (BOH) with HCl, BOH + HCl โ BCl + H2O At equilibrium point Meq of BOH = Meq of BCl M1 × V1 = M2 × V2 Soln. 5(b) Ag๏ + NH3 โ [Ag(NH3)]๏ 2๐ 2.5 × 5 = ๐2 × 2๐ 18 ๐๐ ๐2 = 7.5 mL One mol of BCl is formed. Total volume of solution after neutralization = 2.5 + 7.5 = 10 mL 1 6.8 × 10 โ 3 = K1 = 1.6 × 10 โ 3 = K2 ๏ K= 10 โ14 [๐ต +] 10 โ12 ๐๐ ×๐๐ ๐๐ 2 = ๐(1โ๐ ) = (1โ๐) 10 โ 2 = 0.1 × ๐ 2 (1โ๐ ) 1 1 1 or pH = 2 ๐๐พ๐ค โ 2 ๐๐พ๐ โ 2 log ๐ 1 1 1 = 2 × 14 โ 2 × 12 โ 2 log 10โ1 pH = 7 โ 6 + 0.5 = 1.5 [H+] = 3.2 × 10 โ 2 M. Soln. 3(a) CO2 + H2O โ H2CO3 Solution contains CO2, H2CO3 H2CO3 โ ๐ป โ + ๐ป๐ถ๐3โ ๐ป๐ถ๐3โ โ ๐ป โ + ๐ถ๐3โ2 Hence, the solution contains the species CO2, H2CO3, ๐ป๐ถ๐3โ , ๐ถ๐3โ2 โฆ(2) [๐ด๐ (๐๐ป3 )2 ]โ ๐ด๐ + ×[๐๐ป3 ]2 K = K1 × K2 = [๐ด๐ (๐๐ป3 )+ ] ๐ด๐ + ×[๐๐ป3 ] [๐ด๐ (๐๐ป3 )2 ]1 ๐ด๐ + × [๐๐ป3 ]2 Soln. 6(b) ๐ต๐๐ป ×[๐ป + ] ๐ด๐ ๐๐ป3 โ×[๐๐ป 3 ] Ag + 2NH3 โ[Ag(NH3)2] BCl is a salt of weak base a strong acid BCl + H2O ๏ฎ BOH + HCl or ๐ตโจ + ๐ป2 ๐ โ ๐ต๐๐ป + ๐ป โ Initial conc. 0.1 (c = 0.1) h = degree of hydrolysis 0.1 โ 0.1 h ๐ [๐ด๐(๐๐ป3 )2 ]โ + K= ๐พ โฆ(1) ๐ด๐ + [๐๐ป3 ] [Ag(NH3)]๏ + NH3 โ [Ag(NH3)2]๏ conc. of BCl = [BCl] = 10 = 0.1 M KH = ๐พ๐ค = [๐ด๐ (๐๐ป1+)] × [๐ด๐(๐๐ป3 )2 ]โ ๐ด๐ (๐๐ป3 )โ ×[๐๐ป3 ] = 6.8 × 10โ3 × 1.6 × 10โ3 = 1.08 × 10โ5 ๏ CH3NH2 + HCl โ CH3N H3๐ถ๐ โ Initial conc. 1.0 0.08 0.0 At neutralization 0.02 0.00 0.08 point conc. left CH3NH2 is a base and forms salt with HCl. HCl is the limiting reagent. So a buffer is formed with base conc. = 0.02 mol Salt conc = 0.08 mol pOH = 3.30 + 0.6021 = 3.9021 ๏ pH = 14 โ pOH = 14 โ 3.9021 = 10.098 10.098 = โ log[H+] [H+] = 8.0 × 10 โ 11 M Soln. 7(c) Na2SO4 โ 2Na๏ + SOโ2 4 0.004 Let x be the degree of dissociation x 2x x conc left 0.004 โ x 2x x No. of species left in soln. = 0.004 โ x + x + 2x = 0.004 + 2x Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 25 Solution of Chemical Equilibrium The conc. of isotonic c1 = c2 0.004 + 2x = 0.01 2x = 0.006 X = 0.003 = 3 × 10 โ 3 M Soln. 11(a) ApBq โ pAq+ + qB pโ. ps qs Solubility product Ls = (pS)p × (qS)q = S p + q pp qq 3 × 10 โ3 0.003 % of dissociation = 4 × 10 โ3 × 100 = 0.004 × 100 = 75% Soln. 8(b) Since HX is a weak acid and NaX is its salt with a strong base, degree of hydrolysis of salt of weak acid and strong base h= ๐พ๐ค ๐พ๐ ×๐ = 1 × 10 โ14 1 × 10 โ5 ×0.1 = 1 × 10โ8 = 10 โ 4 % of hydrolysis = 100 × 10 โ 4 = 10 โ 2 % = 0.01% Soln. 9(d) N2O4(g) โ 2NO2 (g) (โn = 1) Kp > Kc Since the temperature is kept constant hence both Kp and Kc remain unchanged. However, when volume is halved, pressure doubles up (Boyleโs law). So in order to keep Kp unchanged ๏ก must decrease. N2O4 (g) โ 2NO2 Initial conc. a 0 ๏ก = Degree of ๏ก 2๏ก dissociation aโ๏ก 2๏ก conc. left Total no. of moles at equilibrium = a โ ๏ก + 2๏ก = (a + ๏ก) Let the pressure at equilibrium = P by (a + ๏ก) mole 2๏ก Partial pressure of NO2 = PNO 2 = a+ ๏ก P aโ ๏ก Partial pressure of PN 2 O 4 = a+ ๏ก P Kp = (๐ ๐๐ 2 )2 ๐๐ 2 ๐ 4 ๐พ 1.44 × 10 โ5 Kc = (๐ ๐)๐โ2 = (0.082 ×773)โ2 Soln. 13(a) Equilibrium is affected by temperature and pressure due to change in heat as well as change in volume of substance. Soln. 14(b) Solution of NaCl will be neutral pH = 1. But HCl โ H๏ + Clโ is highly acidic and pH = 1 for 0.1 M sol. NH4Cl + H2O โ NH4OH + HCl Strong base Weak acid NaCN being the salt of a strong base and a weak acid NaCN is alkaline. Hence, increasing order of pH is HCl < NH4Cl < NaCl < NaCN Soln. 15(d) A2X3 โ 2A + 3 + 3 X โ 2 2y 3y let y be the solubility Ksp = (2y)2 × (3y)3 = 108 y5 4๏ก4 ๐ = ๐ 2 โ๏ก2 Since Kp is unchanged ๏ก๏ต Soln. 12(b) N2(g) + 3H2(g) โ 2NH3 (g) โn = 2 โ (1 + 3) = โ 2 R = 0.082 T = 500 + 273 K = 773 K Kp = Kc × (RT) โ 2 1 ๐ As P increases ๏ก decreases or changes. Soln. 10(d) Kp is not based upon pressure and concentration. Soln. 16(c) pKb = 10.83 pKw = pKa + pKb pKa = 14 โ 10.83 pKa = 3.17 Ka = 6.75 × 10 โ 4 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 26 Solution of Chemical Equilibrium Soln. 17(a) Acid strength of oxy acids of halogens are related to (i) electronegativity of halogen (ii) oxidation state negativity of halogens is Cl > Br > I. Hence the acid strength order is HClO > HBrO > HOl. Volume = 100 mL 8 (OH โ) = 100 = 8 × 10โ2 pH = 11.1 Volume of Soln. 18(c) AlCl3 is hydrolysed by water as AlCl3 + 3H2O โ Al(OH)3 + 3HCl and is the most acidic of all. ๐ 5 5 HCl โก 25 ๐๐ฟ ๐๐ ๐ 5 NaOH HCl left = 50 mL ๐ = 100 mL of 10 = 10 millimol Volume = 75 + 25 = 100 10 [H+] = 100 = 10 โ 1 pH = 1.0 Soln. 19(a) Soln. 22(d) H2O โ H ๏ + OH โ Initial conc. c 0 0 ๏ก = Degree of dissociation c๏ก c๏ก c๏ก c(1 โ ๏ก) c๏ก c๏ก Density of H2O = 1.0 g / c c Weight of one litre of H2O = 1000 g Now, c = no of moles / litre = [H+] = c๏ก = 55.56 × 1.9 × 10 โ7 100 1000 18 = 55.56 mol / litre = 1.05 × 10โ7 = 1.055 × 10 โ 7 mol / litre Kw = Ionic product of water = [H+] × [OH โ] = [1.055 × 10 โ 7]2 = 1 × 10 โ 14 Soln. 20(b) CN โ B.order = 3 C โก N โ N2 B. order = 3(N โก N) But due to absence of bond polarity it is inert. Soln. 21(d) ๐ They neutralize each other and pH = 7.0 b โ After neutralization ๐ 10 = 45 ๐๐ฟ of ๐ 10 HCl + CH3COOH Acid1 Base2 Cl + CH3COOH2 Base1 Acid2 According to Lowry โ Bronsted theory acid donates the proton and base accepts the proton. H HCl Acid1 Cl +H Conjugate Base1 Soln. 23(a) a โ Fe2O3 + 6HCl โ 2FeCl3 + 3H2O FeCl3 is not hydrolysed. b โ NH3 + H2O +NaCl โ NH4Cl + NaOH NaOH reacts with NH4Cl to give back the reactants. c โ SnCl4 + HgCl2 โ 2HgCl2 + SnCl2 The reverse of it is a redox reaction. d โ 2CuI + I2 + 4H๏ โ 2Cu + 2 + 4HI Cu+ is not easily oxidized to Cu + 2 in acidic conditions using I2. ๐ a โ N1V1 = N2V2, 100 × 10 = 100 × 10 45 mL of ๐ d โ 25 mL of NaOH Soln. 24(d) Solubility of hydroxides of II group increases down the group. So, Be(OH)2 has least solubility and lowest value of Ksp. Amount of HCl left ๐ 1 = 10 mL of 10 = 10 × 10 = 1 m mol Soln. 25(a) Total volume = 55 +45 = 100 + 1 (H ) = 100 = 10 โ2 H ClO4 HClO4 M Strong Acid +H Weak Conjugate Base pH = 2.0 ๐ ๐ c โ 10 mL of 10 โก 10 mL of 10 NaOH 80 mL of ๐ 10 NaOH is left = 8 millimol Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 27 Solution of Chemical Equilibrium Soln. 26(d) OCOCH3 OCOCH3 COOH + HCl COOH Unionised Aspirin OCOCH3 Soln. 29(c) (a) CaO + 2CH3COOH โ (CH3COO)2 Ca + H2O Cal. acetate (b) CaCO3 + 2CH3COOH โ (CH3COO)2 Ca + CO2 + H2O (c) CaC2O4 + CH3COOH โ do not dissolve as no reaction takes place. (d) Ca(OH)2 + 2CH3COOH โ (CH3COO)2 Ca + 2H2O. OH COO + COOH + NaOH In alkaline medium Ionised Aspirin remains unionized in acidic medium and ionized in the alkaline medium. Soln. 27(a) Precipitation takes place only when the value o ionic product > Ksp. ๐ Conc. of [Ag+] on mixing = 2๐ × 10โ4 = 10 โ 5 × 5 Both have equal volumes (V each) Soln. 30(d) CH3COOHBF3 with 6 electrons in outermost shell ๏ฎ Lewis acid AlCl3 with 6 electrons in outermost shell ๏ฎ Lewis acid BeCl2 with 4 electrons in outermost shell ๏ฎ Lewis acid SnCl4 is not a Lewis acid as its octet is complete. Soln. 31(a) +H NH2 NH3 H Base Conjugated acid A Bronsted base can accept a proton to give a conjugate acid. ๐ Ksp = 1.8 × 10 โ 10 (Cl โ) = 2๐ × 10โ4 = 5 × 10 โ 5 I.P. = 5 × 10 โ 5 × 5 × 10 โ 5 = 2.5 × 10 โ 9 I.P. > Ksp. Hence, ppt. ion take place. Soln. 24(d) (a) CH3COONH4 + H2O โ CH3COOH + NH4OH Weak acid Weak base It is neutral. pH = 7 (b) NH4Cl + H2O โ NH4OH + HCl Weak base Strong acid Solution is acidic in nature (pH < 7.0) (c) (NH4)2 SO4 + 2H2O โ 2NH4OH + H2SO4 Weak base Strong acid Solution is acidic (pH < 7) (d) CH3COONa + H2O โ NaOH + CH3COOH Strong base Weak acid Solution is alkaline or basic (pH > 7) Soln. 32(d) Since the acid is weak and base is strong the equivalence point will be basic (as salt formed will be basic). That indicator whose pH range lies in basic medium (8 to 9.6) will be preferred (Phenolphthalein). Soln. 33(d) Those reactions in which insoluble precipitates are formed or the gaseous products which are insoluble in water are formed are irreversible in nature. Only (d) is reversible. Soln. 34(c) For reaction between weak acid and a strong base BOH Strong base 1 ๐พ๐ป = + HA BA + H2O Weak acid ๐พ๐ค ๐พ๐ Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 28 Solution of Chemical Equilibrium ๏ KH = 1010 Hence, HClO is the weakest acid and its conjugate base is strongest. Soln. 35(a) Apply Hendersonโs equation [X โ] = [HX] pOH = pKb + log (๐๐๐๐ก ) (๐ด๐๐๐ ) (Kb = 10 โ 10) H ClO HClO Acid +H Conjugate Base pKb = โ log Kb [๐ โ] pOH = 10 + log [1+๐] [๐ โ ] [1+๐] = 1, log 1 = 0 pH = 14 โ pOH = 14 โ 10 = 4 Soln. 36(a) As temperature is constant, Kp does not change or remains unchanged. Soln. 37(c) Both liquid and vapour are in equilibrium and temperature is remaining constant. Thus the total energy remains the same for two phases. Soln. 38(b) Let V be the volume of Ca + 2 and F โ ions. The precipitation takes place only when I.P > Ksp Ksp = 1.7 × 10 โ 10 Type MX2, Ksp = x × (2x)2 = 4x3 ๐ [Ca +2] of mixing = 2๐ × 10โ2 = 5 × 10 โ 3 M ๐ [F โ ] of mixing = 2๐ × 10โ3 = 5 × 10 โ 4 M I.P. = 5 × 10 โ 3 × (5 × 10 โ 4)2 = 125 × 10 โ 11 I.P = 1.25 × 10 โ 9 I.P > Ksp. Hence, precipitation takes place. Soln. 39(b) Kw = [H+] × [OH โ] at 90๏ฐC[H3+O] = 10 โ 6 mol / litre = 10 โ 6 × 10 โ 6 = 10 โ 12 Soln. 40(a) If acid is strong, the conjugate base must be weak. Acid strength decreases in the order: HClO4 > HClO3 > HClO2 > HClO Soln. 41(d) H2(g) + I2(g) โ 2HI(g) Since, the no. of gaseous products are equal to no. of gaseous reactants Kp = Kc Kp depends only on temperature Soln. 42(b) 2SO2(g) + O2 (g) โ 2SO3 + heat Using Le โ Chatelierโs principle. Since, the reaction is exothermic; hence it is favoured only by low temperature. 2SO2(g) + O2(g) โ 2SO3(g) โn = No. of moles of gaseous products โ No. of moles of gaseous reactants =2โ3=โ1 Soln. 43(d) [H+]Total = [H+]Acid + [H+]Water H2O โ H+ + OH โ 10 โ 8 + x x (10 โ 8 + x)x = 10 โ 14 Solve for x, we get x = 9.5 × 10 โ 8 H+ = 10 โ 8 + 9.5 × 10 โ 8 = 10.5 × 10 โ 8 pH = โ log (10.5 × 10 โ 8) ๏ pH lies between 6 and 7. Soln. 44(a) An acid buffer is an equimolar mixture of weak acid and its salt with strong base or conjugate base of acid. CH3COOH is a weak acid and CH3 COOโ given by ammonium acetate is its conjugate base, constitute the buffer. Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 29 Solution of Chemical Equilibrium AIEEE / IIT MAINS Soln. 1(a) Kp = Kc(RT)โng โng = 1 โ 1.5 = โ 0.5 Kc = [๐2 ]1/2 [๐2 ]1/2 [๐๐] = (1/๐พ๐ ) = 1/4 × 10โ4 = 50 ๐พ Kp = Kc(RT) โ ½ = (๐ ๐)๐1/2 Soln. 8(a) For endothermic reaction, โH = +ve โH = Ef โ Eb , it means Eb < Ef ๐พ So, ๐พ๐ = (RT)1/2..s ๐ Soln. 2(c) Soln. 9(a) Kp = Kc(RT)โn โn = 3 โ 2 = 1 Kp = Kc (0.0831 × 457)1. 1.8 × 10 โ3 ๐พ (Kc) = (๐ ๐)๐โ๐ = (8.134 ×700)1 = 3.1 × 10 โ 7 Soln. 3(c) โng = โ ve โ takes place with decrease in number of moles or pressure, so increase in pressure shifts equilibrium in forward side. โH๏ฐ = โ ve โ takes place with evolution of heat or increase in temperature, so decrease in temperature shifts this equilibrium in forward side. Soln. 4(c) [๐๐2 ]2 Kc = [๐ 2 ๐4 = 3 × 10 = ] โ3 (1.2 × 10 โ2 )2 4.8 × 10 โ2 mol L โ 1 Soln. 5(b) (Kp) = Kc (RT)โn โฆโฆโฆ.(i) (where โn = 1 โ 2 = โ 1) Substituting this value of โn in equation (i), Kp = KC (RT) โ 1 ๐พ๐ ๐ Soln. 6(b) In the expression for equilibrium constant species in solid state are not written (that is their mar concentration are taken as 1) P4(s) + 5O2(g) โ P4O10(s) So, Kc = 1/[O2]5 Kc = [๐๐]2 ๐2 [๐2 = 4 × 10 โ 4 ] NO โ 1 2 N2(g) + 1 2 O2(g) NH4HS(s) โ NH3(g) + H2S(g) Initial 0 0.5 0 pressure At equilibrium 0 0.5 + x x Total pressure = 0.5 + 2x = 0.84 So, x = 0.17 atm Kp = PNH 3 × PH 2 S = 0.11 atm2 Soln. 11(d) Cl2(g) + 3F2(g) โ 2 ClF3(g); โH = โ 329 kJ. Favourable conditions 1. Decrease in temperature 2. Addition of reactants 3. Increase in pressure, that is, decrease in volume 1 or ๐พ = ๐ ๐ Soln. 7(d) N2(g) + O2(g) โ 2NO(g) Soln. 10(d) Soln. 12(a) PCl5 โ PCl3 + Cl2 1 0 0 1โx x x PPCl 5 = Total pressure × mole fraction of PCl3 =P ๐ฅ 1+๐ฅ Soln. 13(a) K c 1 = 4.9 × 10 โ 2 = Kc 2 = ๐๐2 ๐2 1/2 [๐๐3 ] [SO 3 ]2 [SO 2 ]2 [O 2 ] (1/Kc 1 )2 Kc 2 = = 416.5 = (1 / 4.9 × 10 โ 2)2 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 30 Solution of Chemical Equilibrium Soln. 14(a) X โ 2Y 1 0 (1 โ x) 2x KP1 = (2๐ฅ)2 (1โ ๐ฅ) Soln. 16(d) The volume occupied by water molecules in vapour phase is (1 โ 10 โ 4)dm3, that is approximately 1 dm3. Pvap V = nH 2 O RT 3170 (Pa) × 1 × 10 โ 3 (m3) = nH 2 O (mol) × 8.314 (J K โ 1 mol โ 1) × 300 (K) (P1 / 1 + x)1 ZโP+Q 1 0 0 (1 โ x) x x nH 2 O = (๐ฅ)2 ๐2 8.314 ×300 = 1.27 × 10 โ 3 Soln. 17(d) CO2(g) + C(s) โ 2CO(g) 0.5 โ x 2x 0.5 โ x + 2x = 0.8 x = 0.3 KP2 = (1โ๐ฅ) (P2 / 1 + x)1 4 × ๐1 3170 × 10 โ3 1 =9 On solving, we get P1: P2 = 1: 36 K= Soln. 15(c) As equation (c) = equation (a) + equation (b) So K3 = K1K2 0.6 ×0.6 0.2 = 1.8 atm Soln. 18(d) As 2nd eq is reverse and half of 1st one so K ๏ขc = 1 Kc = 1 4 × 10 โ4 1 = 2 × 10 โ2 = 50 AIPMT/ CBSE โ PMT/NEET Soln. 1(c) NaCl is a salt of strong acid and strong base hence its aqueous solution will be neutral i.e. pH = 7. NaHCO3 is an acidic salt hence pH < 7. Na2CO3 is a salt of weak acid and strong base. Hence its aqueous solution will be strongly basic ie. pH > 7. NH4Cl is salt of weak base and strong acid, hence its aqueous solution will be strongly acidic i.e. pH > 7. Soln. 2(a) For reaction (1) K1 = ๐๐ 2 ๐2 ๐2 and for reaction (2) K2 = ๐2 1 2 ๐2 ๐๐ 1 2 1 therefore K1 = ๐พ 2 2 Soln. 4(a) Sodium borate is a salt of strong base (NaOH) and weak acid (H3BO3). Hence its aqueous solution will be basic. Soln. 5(d) According to Le โ Chatelierโs principleโ whenever a constraint is applied to a system in equilibrium, the system tends to readjust so as to nullify the effect of the constraint. Soln. 6(b) AgBr has the highest solubility in 10 โ 3 M NH4OH. All other solvents will dissolve AgBr poorly. Moreover bromides of Ag+, Hg22+ and Cu22+ are water insoluble. Soln. 3(b) An aqueous solution of acetic acid dissociates as CH3COOH + H2O โ CH3COO โ + H3O+ Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 31 Solution of Chemical Equilibrium Soln. 7(d) Solid โ Liquid It is an endothermic process. So when temperature is raised, more liquid is formed. Hence adding heat will shift the equilibrium in the forward direction. Soln. 8(c) In presence of the given salts, the solubility of AgCl decreases due to common ion effect. Soln. 9(b) For Bi2S3. Ksp โ = (2s)2. (3s)3 = 4s2.27s3 = 108s5 or s = 5 ๐พ๐ ๐ 108 = 5 1 × 10 โ17 108 Soln. 13(b) According to equation 2HI โ H2 + I2 At t = 0 (2 moles) 0 0 At equilibrium ๏ก moles ๏ก moles (2 โ 2๏ก) moles Total moles at equilibrium = 2 โ 2๏ก + ๏ก + ๏ก = 2 moles Soln. 14(b) A2 โ 2A Equilibrium constant is given by Kc = ๐ด2 ๐ด2 ๐๐๐๐ .๐ก๐๐๐๐ ๐๐ ๐๐๐๐๐ข๐๐ก๐ = ๐๐๐๐ .๐ก๐๐๐๐ ๐๐ ๐๐๐๐๐ก๐๐๐ก๐ Since the value given is very small, hence conc. of products is less. It means the reaction is slow. For MnS.Ksp = s2 or s = ๐พ๐ ๐ = 7 × 10โ16 for CuS s = ๐พ๐ ๐ = 8 × 10โ37 For Ag2S Ksp = 2s2 .s = 4s3 or s = 3 ๐พ๐ ๐ 4 thus MnS has maximum solubility. Soln. 10(a) Molarity (M) = 10M. HCl is strong acid and it is completely dissociated in aqueous solutions as: HCl(10) โ H+(10) + Cl โ. Therefore [H+] = [HCl] or [H+] = 10. pH = โ log [H+] = โ log [10] = โ 1. Soln. 15(d) CuS โ Cu2+ + S2 s s 2 Ksp = S or S = ๐พ๐ ๐ For Binary salts like CuS & HgS, solubility, S = ๐พ๐ ๐ ๏ SCuS = 10โ31 , SHgS = 10โ54 For Ag2Sโ 2 Ag+ + S2 2s s Ksp = 4s3 or SAg 2 S = K sp 4 = 3 10 โ44 4 ๏ The order is CuS > Ag2S > HgS Soln. 16(d) Soln. 11(d) Rate constant of forward reaction (Kf) = 1.1 × 10 โ 2 and rate constant of backward reaction (Kb) = 1.5 × 10 โ 3 per minutes. Equilibrium constant (Kc) = ๐พ๐ ๐พ๐ 1.1 × 10 โ2 = 1.5 × 10 โ3 = 7.33 Soln. 12(d) The buffer system present in serum is H2CO3 + NaHCO3 and as we known that a buffer solution resist the change in pH therefore pH value of blood does not change by a small addition of an acid or a base. [๐๐๐๐ก ] pH = pKa + log10[๐ด๐๐๐ ] For small concentration of buffering agent and maximum buffer capacity ๐๐๐๐ก ๐๐๐๐ โ 1 ๏ pH = pKa Soln. 17(d) A2(g) + B2(g) โ 3C(g) โ D(g) step โ 1 step โ 2 since the step 1 and 2 are exothermic hence low temperature will favour both the reactions. In step โ 1 moles are increasing hence low pressure will favour it. In step โ 2 moles are decreasing, hence high pressure will favour it. Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 32 Solution of Chemical Equilibrium Soln. 18(d) For the reaction XeF6(g) + H2O(g) โ XeOF4(g) + 2HF(g) K1 = ๐๐๐๐น4 ๐ป๐น 2 โฆ(1) ๐๐๐น6 ๐ป2 ๐ and for the reaction XeO4(g) + XeF6(g) + XeO3F2(g) K2 = ๐๐๐๐น4 ๐๐๐ 3 ๐น2 โฆ(2) ๐๐๐ 4 ๐๐๐น6 Since the value of pH > 7, therefore the solution is basic. Soln. 23(a) MgCO3(s) โ MgO(s) + CO2(g) MgO & MgCO3 are solid and they do not exert any pressure and hence only pressure exerted is by CO2. Therefore KP = PCO 2 For reaction: K= Soln. 24(b) Because NH3 after losing a proton (H+) gives NH2โ NH3 + H2O โ NH2โ + H3O+ (Conjugate acid โ base pair differ only by a proton) ๐๐๐ 3 ๐น2 ๐ป2 ๐ ๐๐๐ 4 ๐ป๐น 2 ๏ From eq. no. (1) and (2) K = K2 / K1 Soln. 19(c) Lewis acid is that compound which have electron deficiency. Eg. BF3, SnCl2. Soln. 20(d) 4 No. of moles of NaOH = 40 = 0.1 [Molecular weight of NaOH = 40] No. of moles of OH โ = 0.1 โ 0.1 Soln. 25(b) In polyprotic acids the loss of second proton occurs much less readily than the first. Usually the Ka values for successive loss of proton from these acids differ by at least a factor of 10 โ 3 i.e. K a 1 > Ka 2 H2X โ H+ + HX โ K a 1 HX โ โ H+ + X 2 โ K a 2 Concentration of OH = 1 ๐๐๐ก๐๐ = 0.1 Moles / L As we know that, [H+] [OH โ] = 10 โ 14 ๏ [H+] = 10 โ 13 โต ๐๐ป โ = 10โ1 Soln. 21(d) BA2 โ B + 2A x 2x Solubility product = [x] [2x]2 = 4x3 4 × 10 โ 12 = 4x3 or x = ๏ x = 10 3 4 × 10 โ12 4 โ4 Soln. 22(a) Given: Hydroxyl ion concentration [OH โ] = 0.05 mol L โ 1. We know that the [H+][OH โ] = 1 × 10 โ 14 Or [H+] = 1 × 10 โ14 0.05 Soln. 26(b) CH3COOH is weak acid while NaOH is strong base, so one equivalent of NaOH can not be neutralized with one equivalent CH3COOH. Hence the solution of one equivalent of each does not have pH value as 7. Its pH will be towards basic side as NaOH is a strong base hence conc. of OH โ will be more than the conc. of H+. = 2 × 10 โ 13 mol L โ 1 We also know that pH = โ log [H+] = โ log[2 × 10 โ 13] = โ log 2 โ log 10 โ 13 = โ log 2 โ (โ 13) log 10 = โ 0.3010 + 13.0000 = 12.6990. Soln. 27(a) M2S โ 2 M+ + S โ โ 2x x Solubility product = (2x)2 (x) = 4x3 = 4 (3.5 × 10 โ 6)3 = 1.7 × 10 โ 16 Soln. 28(c) CH3COOH โ CH3COO โ + H+ Ka = ๐ถ๐ป3 ๐ถ๐๐ โ ๐ป + ๐ถ๐ป3 ๐ถ๐๐๐ป Given that, [CH3COO โ] = [H+] = 3.4 × 10 โ 4 M Ka for CH3COOH = 1.7 × 10 โ 5 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 33 Solution of Chemical Equilibrium CH3COOH is weak acid, so in it [CH3COOH] is equal to initial concentration. Hence 1.7 × 10 โ 5 = 3.4 × 10 โ4 3.4 × 10 โ4 [CH3COOH] = [CH3COOH] = ๐ถ๐ป3 ๐ถ๐๐๐ป 3.4 × 10 โ4 ×3.4 × 10 โ4 ๐ถ๐ป3 ๐ถ๐๐๐ป 3.4 × 10 โ4 ×3.4 × 10 โ4 1.7 × 10 โ5 = 6.8 × 10 โ 3 M Soln. 29(c) Strong bases higher tendency to accept the proton. Increasing order of base and hence the order of accepting tendency of proton is I โ < HS โ < NH3 < RNH2 Soln. 30(c) For the reaction BaO2(s) โ BaO(s) + O2(g); โH = + ve. At equilibrium kp = PO 2 [For solid and liquid concentration term is taken as unity] Hence, the value of equilibrium constant depends only partial pressure of O2. Further on increasing temperature formation of O2 increasing as this is an endothermic reaction. Soln. 31(d) Given s = 0.5 × 10 โ 4 moles / lit [MX2 โ M2+ + 2X โ] โต For MX2, Ksp = s × (2s)2 = 4s3 Ksp = 4 × (0.5 × 10 โ 4)3 = 4 × 0.125 × 10 โ 12 = 0.5 × 10 โ 12 = 5 × 10 โ 13 ๐๐๐๐ก ๏ 14 โ pH โ log ๐ต๐๐ ๐ = pKb 0.1 14 โ 9.25 โ log0.1 = pKb 14 โ 9.25 โ 0 = pKb pKb = 4.75 Soln. 34(d) For reaction to proceed from right to left Q > Kc (backward rate) (forward rate) i.e. the reation will be fast in backwared direction i.e r b > rf. Soln. 35(c) The higher is the tendency to donate proton, stronger is the acid. Thus the correct order is R โ COOH > HOH > R โ OH > CH โก CH depending upon the rate of donation of proton. Soln. 36(b) B(OH) does not provide H+ ions in water instead it accepts OH โ ion and hence it is Lewis acid. B(OH)3 + H2O โ [B(OH)4] โ + H+ Soln. 37(c) Ksp for AgI = I × 10 โ 16 In solution of KI, I โ would be due to the both AgI and KI, 10 โ 4 solution KI would provide = 10 โ 4 I โ AgI would provide, say = x I โ (x is solubility of AgI) Total I โ = ( 10 โ 4 + x), Ksp of AgI = (10 โ 4 + x)x ๏ Ksp = 10 โ 4 x + x2 as x is very small ๏ x2 can be ignored ๏ 10 โ 4 x = 10 โ 16 or x = 10 โ16 10 โ4 = 10 โ 12 (mol โ 1) Soln. 32(b) Na2CO3 is a salt of weak acid H2CO3 and strong base NaOH, therefore, its aqueous solution will be basic hence has pH more than 7. Na2CO3 + 2H2O โ 2NaOH + 2H2CO3 Strong base weak base (solubility) Soln. 33(b) Soln. 39(d) For an acid โ base indicator Hln โ H+ + ln โ ๐๐๐๐ก pOH = pKb + log ๐ต๐๐ ๐ ๐ ๐๐๐ก or pKb = pOH โ log ๐ต๐๐ ๐ but pOH + pH = 14 Soln. 38(c) For AX2; Ksp = 4s3 ๏ 3.2 × 10 โ 11 = 4 s3 or s = 3 ๏ Kln = or pOH = 14 โ pH 3.2 × 10 โ11 4 ๐ป + ๐๐ โ [๐ป๐๐ ] = 2 × 10โ4 ๐ป๐๐ or [H+] = Kln × [๐๐ โ ] ๐ป๐๐ or log H+ = log Kln + log ๐๐ โ Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 34 Solution of Chemical Equilibrium Total [H+] = 10 โ 7 + 10 โ 8 = 10 × 10 โ 8 + 10 โ 8 10 โ 8 (10 + 1) = 11 × 10 โ 8 Taking negative on both sides ๐ป๐๐ โ log [H+] = โ log Kln โ log ๐๐ โ lnโกโ or we can write pH = pKln + log [๐ป๐๐ ] or log ๐๐ โ ๐ป๐๐ = pH โ pKln Soln. 40(a) IVth group needs higher S 2 โ ion concentration. In presence of HCl, the dissociation of H2S decreases hence produces less amount of sulphide ions due to common ion effect, thus HCl decrease the solubility of H2S which is sufficient to precipitate II nd group radicals. Soln. 41(a) The solution formed from isomolar solutions of sodium oxide, sodium sulphide, sodium selenide H2O, H2Se & H2Te respectively. As the acid strength increases from H2O to H2Te thus pH decreases and hence the correct of pH is pH1 > pH2 > pH3 > pH4. Soln. 42(d) Given Kb = 1.0 × 10 โ 12 [BPH] = 0.01 M [OH] = ? t=0 BOH โ B+ + OH โ 1 t c 0 0 eq c(1 โ x) cx cx Kb = ๐ ๐ 2๐ฅ 2 1โ๐ฅ ๐๐ฅ 2 = (1โ๐ฅ) 0.01๐ฅ 2 ๏ 1.0 × 10 โ 12 = 0.01(1โ๐ฅ) On calculation, we get, x = 1.0 × 10 โ 5 Now [OH โ] = cx = 0.01 × 10 โ 5 = 1 × 10 โ 7 mol L โ 1 Soln. 45(d) HNO2 is a weak acid and strong base (NaOH). Soln. 46(a) Given Ka = 1.00 × 10 โ 5, C = 0.100 mol for a weak electrolyte, degree of dissociation (๏ก) = ๐พ๐ ๐ถ = 1 × 10 โ5 0.100 = 10 โ 2 = 1% Soln. 47(d) Given, N2 + 3H2 โ 2NH3; K1 N2 + O2 โ 2NO; K2 โฆ(i) โฆ(ii) 1 โฆ(iii) H2 + 2 O2 โ H2O; K3 We have to calculate 4NH3 + 5O2 โ 4NH + 6H2O; K = ? or 2NH3 + 5O2 โ 2 NO + 3H2O For this equation, K = but K1 = & K3 = ๐๐ป3 2 ๐2 ๐ป2 = = ๐2 ๐2 ๐๐ป3 2 ๐5 5/2 ๏๐พ = ๐ป2 ๐ 3 ๐ป2 3 ๐2 3/2 ๐พ2 .๐พ33 ๐พ1 ๐ป2 ๐ 3 . ๐ป2 3 ๐2 3/2 ๐๐ 2 ๐ป2 ๐ 3 ๐2 ๐2 ๐๐ ๐พ3 = ๐ป2 ๐2 1 2 × ๐๐ 2 , ๐พ2 = ๐ป2 ๐ Now operate, ๐๐ 2 3 ๐๐ 2 ๐ป2 ๐ 3 ๐๐ป3 2 ๐2 5/2 ๐2 ๐ป2 3 ๐๐ป3 2 =K ๐พ2 .๐พ33 ๐พ1 Soln. 48(a) Given [H2O+] = 1 × 10 โ 10 M at 25๏ฐ [H3O+] [OH โ] = 10 โ 14 10 โ14 Soln. 43(a) First option is incorrect as the value of KP given is wrong. It should have been KP = ๐ ๐ถ๐ 2 ๐ ๐ถ๐ป 4 × ๐ ๐ 2 ๏ [OH โ] = 10 โ10 = 10โ4 Now, [OH โ] = 10โp ๏ pOH = 4 OH = 10 โ 4 = 10โp CH 2 Soln. 44(a) For a solution of 10 โ 8 M HCl [H+] = 10 โ 8 [H+] of water = 10 โ 7 Soln. 49(b) [H3O]+ for a solution having pH = 3 is given by [H3O]+ = 1 × 10 โ 3 moles / litre [๏ [H2O]+ = 10 โ pH] Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 35 Solution of Chemical Equilibrium Similarly for solution having pH = 4, [H3O]+ = 1 × 10 โ 4 moles / litre and for pH = 5 [H3O+] = 1 × 10 โ 5 moles / litre Let the volume of each solution in mixture be IL, then total volume of mixture solution L = (1 + 1 + 1) L=3L Total [H3O]+ ion presnt in mixture solution = (10 โ 3 + 10 โ 4 + 10 โ 5) moles Then [H3O]+ ion concentration of mixture solution = 10 โ3 + 10 โ4 + 10 โ5 3 ๐= 0.00111 3 M = 0.00037 M = 3.7 × 10 โ 4 M. Since x is very small so can be neglected in denominator Thus, we get PAB 2 = (1 โ x) × P PAB = x × P ๐ฅ PB 2 = × ๐ 2 = K= ๐น๐ 3+ ๐๐ป โ 3 ๐น๐ ๐๐ป 3 = (Fe3+) (OH โ)3 [๏ [solid] = 1] If (OH โ) is decreased by 1 4 times then for reaction equilibrium constant to remain constant, we have to increase the concentration of [Fe3+] by a factor of 43 i.e 4 × 4 x= 64. Thus option (c) is correct answer. Soln. 51(b) The highest pH will br recorded by the most basic solution. The basic nature of hydroxides of alkaline earth metals increase as we move from Mg to Ba and thus the solution of BaCl2 in water will be most basic and so it will have highest pH. ๐ฅ ๐ฅ 2 × ๐ 2 .๐× 2 1โ๐ฅ 2 ×๐ 2 ๐ฅ 3 .๐ 3 [๏ 1 โ x โ1] = 2 ×1 × ๐ 2 = Soln. 50(c) For this reaction Keq is given by ๐ ๐ด๐ต 2 ๐ ๐ต 2 2 ๐ ๐ด๐ต 2 Now, KP = ๐ฅ 3 .๐ 2 1 Kc = ๐ด๐ต 2 ๐ต2 ๐ด๐ต2 2 or Kc = 2๐ฅ 2 ×๐ฅ 2 1โ๐ฅ 2 3 = x [(1 โ x) can be neglected in denominator (1 โ x) ๏ โ 1] The partial pressures at equilibrium are calculated on the basis of total number of moles at equilibrium. Total number of moles = 2 (1 โ x) + 2x + x = (2 + x) ๏ PAB 2 = 2๐ฅ 2(1โx) (2+x) × P where P is the total pressure. ๐ฅ PAB = (2+๐ฅ) × ๐, ๐๐ต2 = (2+๐ฅ) × ๐ ๐ ๐๐ ๐ฅ = 2๐พ๐ 3 ๐ Soln. 53(c) Given reaction are XโY+Z โฆ(i) and A โ 2 B โฆ.(ii) Let the total pressure for reaction (i) and (ii) be P 1 and P2 respectively, then ๐พ๐ 1 ๐พ๐ 2 9 =1 (given) After dissociation, XโY+Z At equilibrium (1 โ ๏ก) ๏ก ๏ก [Let 1 mole of X dissociate with ๏ก as degree of dissociation] Total number of moles = 1 โ ๏ก + ๏ก + ๏ก = (1 + ๏ก) 1โ ๏ก Thus PX = Soln. 52(b) For the reaction 2AB2(g) โ 2AB(g) + B2(g) At equi. 2(1 โ x) 2x x 2.๐พ๐ ๐๐ ๐ฅ 3 = PZ = . P1; PY = 1+๏ก ๏ก P1 ; .P1 1+ ๏ก ๏ก ๏ K P1 = . P1 × 1+ ๏ก โฆ.(i) Similarly for At equilibrium We have, 2๏ก๐2 2 KP2 = ๏ก 1+ ๏ก 1+ ๏ก ๏ก 1+ ๏ก . ๐1 / 1โ ๏ก 1+ ๏ก . ๐1 A โ 2B (1 โ ๏ก) 2๏ก 1โ ๏ก / 1+ ๏ก ๐2 โฆ.(ii) Dividing (i) by (ii), we get ๐พ๐ 1 ๐พ๐ 2 ๏ก2 .๐ ๐พ 1 ๐ = 4 ๏ก2 .๐1 ๐๐ ๐พ๐ 1 = 4 . ๐1 2 1 ๐ or 9 = 4 . ๐1 2 ๐1 or ๐ = 2 36 1 ๐2 ๏ ๐พ๐ 1 ๐พ๐ 2 2 9 =1 or P1: P2 = 36:1. Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 36 Solution of Chemical Equilibrium i.e. Option (c) is correct answer. Soln. 54(c) Given, CH3COOH โ CH3COO โ + H+; K a 1 = 1.5 × 10 โ5 โฆโฆ(i) HCN โ H+ CN โ โ HCN; K ๏ขa 2 1 =๐พ ๐2 1 โฆ.(ii) = 4.5 × 10 โ10 ๏ From (i) and (ii), we find that the equilibrium constant (Ka) for the reaction, CN โ + CH3COOH โ CH3COO โ + HCN, is Ka = K a 1 × K ๏ขa 2 = 1.5 × 10 โ5 1 4.5 × 10 โ10 = × 105 = 3.33 × 104. 3 Soln. 55(d) (CH3)3 B โ is an electron deficient, thus behave as a lewis acid. Soln. 56(d) Ammonium chloride is a salt of weak base and strong acid. In this case hydrolysis constant Kh can be calculated as Kh = ๐พ๐ค ๐พ๐ 1 × 10 โ14 = 1.77 × 10 โ5 = 5.65 × 1010 Soln. 57(d) โ Ba(OH)2(s) โ Ba2+ aq + 2OH aq pH = 12 or pOH = 2 [OH โ] =10 โ 2 M Ba(OH)2 โ Ba2+ + 2OH โ 0.5 × 10 โ 2 10 โ 2 2+ [๏ Concentration of Ba is half of OH โ] Ksp = [Ba2+][OH โ]2 = [0.5 × 10 โ 2][1 × 10 โ 2]2 = 0.5 × 10 โ 6 = 5 × 10 โ 7 M3 Soln. 59(d) 2C(s) + O2(g) โ 2 CO2(g) โn = 2 โ 1 = + 1 ๏ Kc and Kp are not equal. Soln. 60(d) Kb = 10 โ 10 ; Ka = 10 โ 4 or pKa = 4 For the buffer solution containing equal concentration of B โ and HB pH = pKa + log 1 pH = pKa = 4 The octahedral complex ion [COCl2(NH3)4]+ i.e. tetra amminedichloro cobalt (III) ion exists as cis and trans isomers. Soln. 61(c) Boron in B2H6 is electron deficient. Soln. 62(c) 2A(g) + B(g) โ 3C(g) + D(g) 2 1 3 1 1 1 0 0 Mole ratio Molar conc. at t=0 Equilibrium 0.50 Molar concentration Kc = ๐ถ 3 ๐ท ๐ด2 ๐ต = 0.75 0.75 0.25 0.75 3 0.25 0.50 2 0.75 Soln. 63(b) Given [NH3] = 0.3 M, ๐๐ป4+ = 0.2 M, Kb = 1.8 × 10 โ5 . pOH = pKb + log ๐ ๐๐๐ก ๐๐๐ ๐ [pKb = โ log Kb ; pKb = โ log โ5 1.8 × 10 ] ๏ pKb = 4.74 0.2 = 4.74 + log 0.3 = 4.74 + 0.3010 โ 0.4771 = 4.56 PH = 14 โ 4.56 = 9.436 Soln. 58(d) pH = p Ka + log ๐๐๐๐ก ๐ด๐๐๐ Log[H+] = log Ka โ log + Lod[H ] = log Ka + log + [H ] = Ka ๐๐๐๐ก Soln. 64(c) BF3 behaves as lewis acid. ๐ด๐๐๐ ๐ด๐๐๐ ๐๐๐๐ก ๐ด๐๐๐ ๐๐๐๐ก 0.1 = 1.8 × 10 โ 5 × 0.2 = 9 × 10 โ 6 M Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 37 Solution of Chemical Equilibrium Ksp = [Pb+2][Cl โ]2 1.7 × 10 โ 5 = [Pb+2][0.1]2 [Pb+2] = 1.7 × 10 โ 3 M. Soln. 65(c) Ksp = [Ag+][Cl โ] 1.8 × 10 โ 10 = [Ag+][0.1] [Ag+] = 1.8 × 10 โ 9 M AIIMS Soln. 1(c) K does not depend upon the initial concentration of the reactants. Soln. 2(b) Apply Le โ Chatelierโs principle. Soln. 3(d) K for the reaction is given by K = [CO2] Because concentration of solids taken to be unity. Since [CaCO3] and [CaO] do not figure in the expression. There will be no effect of addition of CaCO3. Soln. 4(c) The given reaction, in the forward direction, is endothermic and proceeds with an increase in number of moles gaseous constituents. As such high temperature and low pressure will favour the forward process. An increase in concentration of I or decrease in concentration of I2 will shift the equilibrium in the backward direction. Subjective Questions From IITJEE Soln. 1 Conc. of NaOH = 0.1 M Conc. of Ha = 0.1 M NaOH + HA โ NaA + H2O Since, at the end point all the acid and base neutralize each other and form the salt. Conc. of NaA = 0.1 2 = 0.05 M โ (As volume of NaA doubled) Aโ + H2O โ HA + OH โ HA โ H๏ + Aโ Ka = ๐ป + × [๐ด]โ [๐ป๐ด] = 5.6 × 10 โ 5 โ log [H+] = log = โ log ๐พ๐ค × ๐พ๐ ๐ = โ log ๐พ๐ค × ๐พ๐ โ log [H+] = pH = 9 Soln. 2 Molal elevation in boiling point constant is the measure of strength of intermolecular forces. If Kb is high, the bond is polar and stronger dipole โ dipole interaction leads to higher boiling point. Thus higher the value of Kb more is the boiling point. X Y Z Boiling Point 100๏ฐC 27๏ฐC 253๏ฐC Kb 0.68 0.53 0.98 ๐ 1 × 10 โ14 ×5.6 × 10 โ5 0.05 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 38 Solution of Chemical Equilibrium 10 โ 5 = Conc. = Soln. 3 No. of moles of acetic acid = 500 × 0.2 1000 500 × 0.2 No. of moles of HCl = 1000 = 0.1 M = 0.1 M Since, HCl is a strong acid and due to common ion effect, the dissociation of CH3COOH will be CH3COOH โ H๏ (aq) + Clโ Initial conc. c 0 0 ๏ก = degree of c๏ก c๏ก c๏ก ionization at equilibrium c โ c๏ก c๏ก + 0.1 M c๏ก (๏ก = Degree of dissociation and is small) Ka = Ka = ๐ป + ×[๐ถ๐ป3 ๐ถ๐๐ โ ] [๐ถ๐ป3 ๐ถ๐๐๐ป] = ๐ ๏ก +0.1 ×(๐ ๏ก) ๐ (1โ ๏ก) ๐ ๏ก2 + 0.1๏ก (1โ ๏ก) As ๏ก is small, 1 โ ๏ก ๏ป 1 neglecting c๏ก2 Ka = 0.1๏ก ๐พ ๏ก = 0.1๐ = 1.75 × 10 โ5 0.1 = 1.75 × 10 โ 4 [H+] = c๏ก + 0.1 Since c๏ก is very small. [H+] = 0.1 M or pH = 1 (ii) Amount of NaOH added = 6g ๐๐๐๐๐ ๐๐ ๐๐2 ๐๐ ๐ ๐๐๐ข๐ก๐๐๐ 1.3653 Moles of SO2 in solution = 1.365 × 10 โ 5 1 pH = 2 (pKa โ log c) 1 pH = 2 [1.92 โ (log 1.365 × 10 โ 5)] 1 = 2 (1.92 + 5 โ log 1.365) 1 = 2 (1.92 + 5 โ 0.135) 1 1 = 2 (6.92 โ 0.135) = 2 (6.7849) pH = 3.3925 Soln. 5 Pb(OH)2 โ Pb +2 + 2OH โ S S 2S Let S be the solubility Ksp = Pb(OH)2 = 4S3 = 4 × (6.7 × 10 โ 6)3 = 1.203 × 10 โ 15 pH = 8 pOH = 14 โ 8 = 6 [OH โ] = 10 โ 6 Pb +2 × [OH โ]2 = Ksp [Pb +2] = 1.203 × 10 โ15 (10 โ6 )2 = 1.203 × 10 โ 3 mol / litre 6 No. of moles of NaOH = 40 = 0.15 M NaOH is a strong base and HCl is a strong acid. They neutralize each other 0.1 M NaOH = 0.1 M HCl Conc. of NaOH left = 0.15 โ 0.1 = 0.05 M NaOH + CH3COOH โ CH3COONa + H2O 0.05 0.1 M 0.05 M 0.05 Conc. left 0 0.05 M 0.05 M 0.05 They form a buffe of sod. acetate + CH3COOH Apply Hendersonโs equation [๐๐๐๐ก ] pH = pKa + log [๐ด๐๐๐ ] = โ log 1.75 × 10 โ5 (log 1 = 0) 0.05 + log 0.05 pH = 5 โ log 1.75 = 4.75 Soln. 4 SO2 + H2O โ H2SO3 Solubility of SO2 in water at 298 K = 1.3653 mol / litre Average conc. of SO2 in atmosphere = 10 ppm = 10 × 10 โ 6 = 10 โ 5 mol / litre. Soln. 6 Amount of NH4HS = 3.06 g Mol. wt of NH4HS = 14 + 4 + 32 +1 = 51 No. of moles of NH4HS = 3.06 51 = 0.06 mol Conc. of NH4HS in solution = 0.06 2 = 0.03 mol / litre whose volume is 2 litre. NH4HS is 30% dissociated. Conc. of dissociated NH4HS 30 = 100 × 0.03 = 9 × 10 โ 3 = 0.009 mol / litre NH4HS(s) โ NH3 (g) + H2S(g) Kc = ๐๐ป3 ×[๐ป2 ๐] [๐๐ป4 ๐ป๐ ] = [NH3] × [H2S] โ5 Kc = 8.1 × 10 = 0.009 × 0.009 โn = No. of moles of gaseous products โ No. of moles of gaseous reactants =2โ0=2 T = 27๏ฐC = 300K Kp = Kc × (RT)โn = Kc × (RT)2 Kp = 8.1 × 10 โ 5 × (0.082 × 300)2 = 4.9 × 10 โ 2 atm Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 39 Solution of Chemical Equilibrium Since, NH4HS is solid , thus addition of solid NH4HS is involved neither in Kc nor in Kp. Hence, it has no effect. Soln. 7 Volume of HCl of pH (2) = 200 mL Volume of NaOH = pH (12) = 300 mL Since, pH = 2, [H+] = 0.01 M pH = 12, [OH] = 10 โ 2 M = 0.01 M So 200 mL of HCl of 0.01 M will be neutralized by 200 mL of NaOH of same molarity (0.01 M) Volume of NaOH left Molarity = 300 โ 200 = 100 No. of millimoles of NaOH = 100 × 10 โ 2 = 1.0 Total volume = 500 mL 1 โ [OH ] = 500 = 2 × 10 โ3 M pOH = 3 โ log 2 = 3 โ 0.03010 = 2.7 pH = 14 โ 2.7 = 11.3010 ๐ด๐ + × [๐๐ป3 ]2 [๐ด๐ (๐๐ป3 )2 ]+ = 6.2 × 10 โ 8 Ag๏ + 2NH3 โ [Ag(NH3)2]๏ 1 1 K๏ข = ๐พ = 6.2 × 108 = + [Ag ] = 10 8 6.2 = [๐ด๐ (๐๐ป3 )2 ]โ [๐ด๐ ]+ [๐๐ป3 ]2 [๐ด๐ (๐๐ป3 )2 ]โ 10 8 ×[๐๐ป3 ]2 6.2 Since, K๏ข is very high, whatever Ag + is formed from dissociation of AgCl changes to [Ag(NH3)2]๏ . Hence, [Cl โ] = [Ag(NH3)2]+ formed = c moles each Let the conc. of ๐ถ๐ โ formed = c mole / litre Ksp of AgCl = [Ag +] × [Cl โ] Ksp of AgCl = [๐ด๐ (๐๐ป3 )2 ]+ 10 8 × [๐๐ป3 ]2 6.2 = 1.8 × 10 โ 10 10 8 6.2 1.8 × 10 โ 10 × 10 8 6.2 × ๐ ๐๐ ๐ถ๐ โ 6.2 Log [H+] = log Ki + log = 1.8 × 10 โ2 6.2 = 0.29 × 10 โ 2 c = (0.29 × 10โ2 ) = 0.0538 M Soln. 9 HIn โ ๐ป โ + ๐ผ๐โ Km = [H+] × [In โ] / [HIn] ๐ป๐ผ๐ ๐ผ๐ โ [๐ผ๐ โ] โ log [H+] = โ log Ki + log pH = Ki + log [๐ป๐ผ๐ ] ๐ผ๐ โ ๐ป๐ผ๐ To get the sharp colour change that must be visible to naked eye. [๐ผ๐ โ] = ±10 [๐ป๐ผ๐ ] [๐ผ๐ โ] If [๐ป๐ผ๐ ] = + 10 pH1 = pKi + log 10 = 5 + 1 = 6 [๐ผ๐ โ] when [๐ป๐ผ๐ ] = โ10 pH2 = pKi โ log 10 = 5 โ 1 = 4 pH1 = 6, pH2 = 4. 8.2 × 10 โ12 [Ag+]2 = 1.5 [Ag+] = 2.338 × 10 โ 6 = 2.34 × 10 โ 6 mol / litre ๐ถ๐ โ = 0.0026 g Atomic wt. of Cl = Mol. wt. of Cl = 35.5 [Cl โ] = 0.0026 35.5 = 7.32 × 10 โ 5 M Ksp of AgCl = [Ag+] × [Cl โ] = 2.34 × 10 โ 6 × 7.32 × 10 โ 5 = 1.71 × 10 โ 1 0 Soln. 11 N2(g) + O2(g) โ 2NO(g) Kc = × [๐๐ป3 ]2 = c2 1.8 × 10 โ10 × 10 8 [๐ผ๐ ] Taking logarithm of eqn. (2) ๐ ×๐ ×[๐๐ป3 ]2 [NH3] = 1 M c2 = [๐ป๐ผ๐ ] Soln. 10 Ag2CO3 โ 2Ag๏ (aq) + COโ2 3 (aq) Ksp = [Ag+]2 × [COโ2 ] = 8.2 × 10 โ 12 3 But [COโ2 3 ] = 1.5 given Soln. 8 [Ag(NH3)2]+ โ Ag+ + 2NH3 K= H๏ = Ki × [๐๐]2 ๐2 ×[๐2 ] N2(g) + O2(g) โ 2NO(g) Let the total no. of moles of O2 + N2 in air = 100 Let the no. of moles of N2 = a N2(g) + O2(g) โ 2NO(g) Initial a 100 โ a 0 Let x of x x 2x N2 combines Conc. left a โ x 100 โ a โ x 2x At equilibrium mole % of NO is 1.8 2๐ฅ 100 1.8 = 100 or x = 0.9 Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 40 Solution of Chemical Equilibrium Kc = (2๐ฅ)2 ๐โ๐ฅ (100 โ๐โ๐ฅ) 1.8 ×1.8 ๐โ๐ฅ (100โ๐โ๐ฅ) = = 2.1 × 10 โ 3 1.8 ×1.8 ๐โ0.9 (100 โ ๐โ0.9) = 2.1 × 10 โ 3 ๏ a โ 7.9 Thus % of N2 in air = 79% O2 = 100 โ 79 = 21% Soln. 12 Conc. of HCOโ 3 = 183 ppm = 183 ๏ญg / mL = 183 mg / litre Amount of HCOโ 3 present in 1000 kg of water (= 1000 L) = 183 ×1000 1000 = 183 g / 1000 kg of water Mol. wt. of HCOโ 3 = 61 No. of moles of HCOโ 3 = 183 61 = 3 moles of HCOโ 3 CaO + H2O โ Ca(OH)2 Ca(OH)2 + Ca(HCO3)2 โ 2CaCO3 + 2H2O From equation thus one mole of CaO requires 2 moles of HCOโ 3 ion. No. of moles of CaO = 1.5 mol โ2 After removal of HCOโ 3 , the solution contains SO3 2H2O + CaSO4 โ Ca(OH)2 + H2SO4 96 = No. of moles Ca +2 = 40 = 2.4 moles +2 Conc. of Ca in solution = 96 ppm CaSO4 + 2H2O โ Ca(OH)2 + H2SO4 Conc. of Ca +2 โก Conc. of (H +) = 2.4 mol / 1000 L 2.4 = 1000 = 2.4 × 10 โ 3 mol / litre pH = โ log (H +) = โ log (2.4 × 10 โ 3) = 3 โ log 2.4 = 3 โ 0.38 = 2.62 Soln. 13 NaCN is a salt of a week acid (HCN) and a strong base (NaOH) NaCN + H2O โ NaOH + HCN Or CN โ + H2O โ ๐๐ปโ + ๐ป๐ถ๐ Initial conc. c 0 0 0 h = Degree of ch ch ch hydrolysis Conc. left c โ ch ch ch Kb = Kb = ๐๐ป โ × [๐ป๐ถ๐ ] [๐ถ๐ โ ] ๐๐ป โ × [๐๐ป โ ] [๐ถ๐ โ ] ๐๐ ×๐๐ = ๐ (1โ๐) = [๐๐ป โ]2 โฆ.(i) [๐ถ๐ โ ] Taking logarithm of eqn. (1) log Kb = log [OH โ]2 โ log [CN โ] โ log Kb = โ log [OH]2 + log [CN โ] pKb = โ 2 log (OH โ) + log (0.5) 4.70 = โ 2 log (OH โ) + log (0.5) = 2 pOH + log 0.5 2 pOH = 4.70 log 0.5 = 4.70 + 0.30 pOH = 2.5 [OH โ] = 10 โ 2.5 ๐พ [H +] = [๐๐ป๐คโ ] = 1 × 10 โ14 10 โ2.5 = 10 โ 11.5 pH = 11.5 Soln. 14 Ammonium acetate is a salt of a weak acid and a weak base 1 pH = (pKw + pKa โ pKb) [pKa = 3.8, pKb = 4.8] 2 1 = 2 [14 + 3.8 โ 4.8] = 6.5 Soln. 15 [Ag(CN)2]โ โ ๐ด๐+ + 2๐ถ๐ โ Conc. of [Ag +] = Conc. of AgNO3 = 0.03 M 1 mole of Ag + requires two moles of CN โ Then, CN โ needed = 2 × 0.03 = 0.06 M Actual conc. of CN โ = 0.1 M Conc. of CN โ left = 0.1 โ 0.06 = 0.04 [Ag(CN)2]โ โ ๐ด๐+ + 2๐ถ๐ โ 4.0 × 10 โ 19 = K = ๐ด๐ + × [๐ถ๐ โ ]2 [๐ด๐ (๐ถ๐2 )โ [Ag +] = 4.0 × 10 โ 19 × = [๐ด๐ (๐ถ๐2 )]โ [๐ถ๐ โ ]2 4.0 × 10 โ19 × 0.03 (0.04)2 [Ag ] = 7.5 × 10 โ 19 M + Corporate Office: COM N PASS EDUCATION Pvt. Ltd. 13/1/1A, Rani Sankari Lane, Kolkata โ 700026, W.B. Zonal Office: Mahiskapur, Durgapur โ 713205 Page 41
© Copyright 2025 Paperzz