Physics140 Fluids Chapter9 Statesofma:er Solid Gas Liquid Plasma Physics140,Prof.M.Nikolic 2 Fluids Afluid–asubstancethatcanflow (incontrasttoasolid) ü Air–gas ü Water–liquid Fluidscomforttotheboundariesofanycontainerinwhichwe putthem,anddonotmaintainafixedshape. Physics140,Prof.M.Nikolic 3 Pressure PressurearisesfromthecollisionsbetweentheparLclesofafluidwith anotherobject(containerwallsforexample). Pressure–forceperunitarea: F P= A SIunits:N/m2=1Pascal[Pa] NotaLonforpressure:P(again)! Otherunits:1atmosphere(atm)=1.013x105Pa=760mmHg Physics140,Prof.M.Nikolic 4 Exercise:Pressure Whatisthepressureinatmospheresfroma60-kgpersonstandingontheground whosetwofeetcoveranareaof500cm2. Whatisgiven: m=60kg AreaA=500cm2 F P= A −4 2 10 m 2 Firstweconvertfromunitsofcm2toSIunitsofm2: A = 500 cm × = 0 . 05 m 1 cm 2 Theforceappliedistheforceofgravity(weight)ofaperson:F=mg 2 mg 60kg ⋅ 9.8m/s2 P= = = 11760 Pa 2 A 0.05 m P = 11760 Pa × Physics140,Prof.M.Nikolic 1 atm = 0.12 atm 5 1.013 ×10 Pa 5 ConceptualquesLon–Pressure Q1 Thepressureexertedonthegroundbyamanisgreatestwhen: A. B. C. D. Hestandswithbothfeetflatontheground Hestandsflatononefoot Hestandsonthetoesofonefoot Heliesdownontheground Nowimaginethe pressureonherfeet. F P= A Forceofgravitystaysconstant ThesmallertheareaèThebiggerthepressure Physics140,Prof.M.Nikolic 6 Atmosphericpressure • Theairaboveushasweightandwearebeingforcedtobearthat weight. • ThepressureoftheEarth’satmospherevarieswithalLtude. • Atmosphericpressureatseelevelisabout 1.013x105N/m2=10340kgpereverysquaremeter Physics140,Prof.M.Nikolic ThecompensaLonforatmosphericpressurecomes from,amongotherthings,ourbloodpressure. 7 Pascal’sprinciple Pascal’sPrincipleisthekeytounderstandingwhyhydrauliclies and,forthatma:er,hydraulicbrakesworkthewaytheydo. Physics140,Prof.M.Nikolic 8 Pascal’sprinciple Achangeinpressureatanypointinconfinedfluidistransmi:ed everywherethroughoutthefluid. Or:Thefluidpressuremustbethesameeverywhereinaweightlesssta@cfluid. Theappliedforceis transmi:edtothepistonof cross-secLonalareaA2here. Physics140,Prof.M.Nikolic ApplyaforceF1here toapistonofcrosssecLonalareaA1. ΔP1 = ΔP2 F1 F2 = A1 A2 9 Pascal’sprinciple Volumeofthedisplacedfluidhasto staythesame V1 = V2 A1d1 = A2 d 2 F1d1 = F2d2 Theworkdonebybothforces hastostaythesame. Whichmeansthatthesamefactorbywhichtheforcegoesupisthefactorby whichthedistanceoftheinputpistongoesdown. Physics140,Prof.M.Nikolic 10 Q2 ConceptualquesLon–Lieingacar Acontainerisfilledwithoilandfi:edonbothendswithpistons.Theareaofthelee pistonis10mm2;thatoftherightpiston10,000mm2.Whatforcemustbeexerted ontheleepistontokeepthe10,000-Ncarontherightatthesameheight? Fcar F = Acar A 10,000 N F = 10,000 mm2 10 mm2 F = 10 N A. B. C. D. 10N 1000N 10000N 106N Physics140,Prof.M.Nikolic 11 Exercise:Hydrauliclie Ahydrauliclieislieingacarthatweighs12kN.TheareaofthepistonsupporLngthe carisA,theareaoftheotherpistonisa,andtheraLoA/a=100. a)Howfarmustthesmallpistonbepusheddowntoraisethecaradistanceof1cm? Whatisgiven: Fcar=12000N A/a=100 dcar=1cm Fcar Fsp = A a Fcar A = = 100 Fsp a Fsp = Fcar 12, 000 N = = 120 N 100 100 Butwealsoknowthattheworkdonebybothforceshastobethesame. Fsp d sp = Fcar d car dsp = Fcar dcar Fsp dsp = 12, 000 N ⋅1 cm = = 100 ⋅1 cm =1 m 120 N b)Whatistheworkdone? W = Fsp d sp = Fcar d car Physics140,Prof.M.Nikolic W = 12000 N ⋅ 0.01 m = 120 J 12 Density Density–massperunitvolume m ρ= V NotaLon:Greekle:errho-ρ m–massoftheobject V–itsvolume SIunits:kg/m3 Example:Whatisthemassoftheairintheclassroomwithdimensions12m and8mandaheightof4m.Densityofair–1.29kg/m3 Volumeoftherectangularcube: V = h ⋅ l ⋅ w = 12m ⋅ 8m ⋅ 4m = 384m 3 m = ρV = (1.29kg / m 3 )⋅ (12m ⋅ 8m ⋅ 4m) = 495kg Physics140,Prof.M.Nikolic 13 Gravityandfluidpressure ü ü ü ü AfluidexertsapressureinalldirecLons. AtanypointatrestthepressureisthesameinalldirecLons Thepressureincreaseswithdepth Theforceduetofluidpressurealwaysactsperpendiculartoany surfaceitisincontactwith Physics140,Prof.M.Nikolic 14 Gravity’seffectonfluidpressure Imagineacylinderoffluid WecandrawanFBDforthefluidcylinder y 3forcesareexertedonthefluidcylinder P1A x mg P2A ApplyNewton’s2ndLaw: ∑F y =0 Physics140,Prof.M.Nikolic 1. Weightofthecylinderèmg 2. Forceduetopressurefromthe abovemoleculesèF1=P1A 3. Forceduetopressurefromthe moleculesbellowèF2=P2A P2 = P1 + ρgd P2 A − P1 A − mg = 0 Trueforanyamountoffluid. m = ρV = ρAd Notethatpoint2isdistancedbellow point1. 15 Gravity’seffectonfluidpressure Ifthetopofthefluidcolumnisplacedatthesurfaceofthe fluid,thenP1=Patmifthecontainerisopen. P = Patm + ρgd Oh,sowhenIdiveIfeelboth105Papluswaterpressure. Iftheobjectrisesupintheair,P2willbeaboveP1andthepressurewilldecrease èP2–P1=-ρgd Physics140,Prof.M.Nikolic 16 Exercise:Pressureinthelake Atthesurfaceofafreshwaterlake,thepressureis105kPa. (a)Whatisthepressureincreaseingoing35.0mbelowthesurface? Whatisgiven: P1=105kPa=105x103Pa d=35m P2 = P1 + ρgd Theproblemisaskingfor thechangeinpressure ΔP = P2 − P1 = ρgd Checkthetextbooktable9.1tofindthedensityoflakewater: →ρ=1000kg/m3 ΔP = 1000 kg/m3 ⋅ 9.8 m/s2 ⋅ 35 m = 343 ×103 Pa (b)Whatisthepressuredecreaseingoing35.0mabovethesurface?Assumeair densityof1.2kg/m3? Inthiscase,thepressureisdecreasingandwecanwrite: ΔP = P2 − P1 = −ρgd ΔP = −1.2 kg/m 3 ⋅ 9.8 m/s2 ⋅ 35 m = −411.6 Pa Physics140,Prof.M.Nikolic 17 Measuringpressure-Manometer U-shapedtubethatisparLallyfilledwithliquid Bothendsofthetubeare opentotheatmosphere Physics140,Prof.M.Nikolic Containerofgasisconnected tooneendofthetube Thepressuredifferencebetweenthegas andtheatmospherewillpushthefluid 18 Measuringpressure-Manometer Wecanseefromthefigure: 1. PointCisatatmosphericpressure Pc = Patm 2. PointsBandB’areatthesamepressure →sameheight PB = PB' ThepressureatpointBisthepressureofthegas. PB = PB ' = PC + ρgd Pgauge = PB − Patm = ρgd Gaugepressure Physics140,Prof.M.Nikolic 19 Measuringpressure-Barometer Mercurybarometer: • Thepressureatthetopofthecolumninthetube iszero. • Thepressureatthebo:omofthecolumnis equaltoatmosphericpressure Theatmospherepushesonthecontainerofmercury whichforcesmercuryuptheclosed,invertedtube. Pgauge = 0 − Patm = ρgd Thedistancediscalledthebarometricpressure. Unitsofpressure:1atm=1.013x105Pa=760mmHg. Physics140,Prof.M.Nikolic 20 ApplicaLon–Asphygmomanometer Youmustlovethename! Thesimplestversion:aclosedbag(thecuff)withamercurymanometer Physics140,Prof.M.Nikolic Systolicpressure– whentheheartbeats Diastolicpressure– betweentheheartbeats 21 Exercise:UsinganIVfluid AnIVisconnectedtoapaLent’svein.Thebloodpressureintheveinhasagauge pressureof12mmofmercury.AtleasthowfarabovetheveinmusttheIVbagbe placedinorderforfluidtoflowintothevein?AssumethatthedensityoftheIVfluid isthesameasblood(ρIV=ρblood=1060kg/m3). dIV IVfluid InorderfortheIVfluidtoflowintothevein,thegaugepressureofthe fluidhastobeatleastequaltothegaugepressureoftheblood vein Pgauge, IV ≥ Pgauge, blood Trustme,youwouldnotlikeit theotherwayaround. Thebloodgaugepressureis12mmHgèThesearenotstandardunitsofpressure,weneed toconverttoPascals: " 101,300 Pa % Pgauge,blood = 12 mm Hg × $ ' = 1600 Pa # 760 mm Hg & TheIVgaugepressure Pgauge,blood = ρ IV gdIV Physics140,Prof.M.Nikolic Pgauge,IV = ρ IV gdIV dIV = 1600 Pa = 0.154 m 3 2 1060 kg/m ⋅ 9.8 m/s 22 Buoyantforce Whenanobjectisimmersedinafluid,thepressureonthelowersurfaceisalways higherthanthepressureontheuppersurfaceèP2>P1. AnFBDfortheobject y Thetotalforceontheblockduetothe fluidiscalledthebuoyantforce. P1A FB = P2 A − P1 A = (P2 − P1 )A mg x P2A FB = ρgdA = ρgV ρ–thedensityofthefluid V=d*A–thevolumeoftheblock submergedinfluid Physics140,Prof.M.Nikolic 23 Archimedes’principleofbuoyancy Archimedes’principle:Afluidexertsanupwardforceonasubmerged objectequalinmagnitudetotheweightofthevolumeoffluid displacedbytheobject Fb = mfluid g = ρfluid gVfluid mf–massofthefluidthatisdisplacedby thebody Vfluid = Vsubmerged Fb = ρfluid gVsubmerged Volumeofthedisplacedfluid=volumeofthesubmergedobject. Physics140,Prof.M.Nikolic 24 FloaLng–Equilibrium Whengravita@onalforce=buoyantforce→equilibrium(floa@ng) FB = mg ρfluid gVsubmerged = ρobject gVobject Volumeofthedisplacedfluid=volumeofthesubmergedobject. Physics140,Prof.M.Nikolic 25 Exercise:Buoyantforce Aflat-bo:omedbargeloadedwithcoalhasamassof3.0x105kg.Thebargeis20.0 mlongand10.0mwide.Itfloatsinfreshwater(ρ=1000kg/m3). a)Whatisthebuoyantforceonthebarge? FB Whenthebargefloats→equilibrium (buoyantforce=weightofbarge) FB = mbarge g = ρbarge gVbarge mbargeg FB = 3 ×105 kg ⋅ 9.8 m/s2 = 2.94 ×106 N b)Whatisthedepthofthebargebelowthewaterline? FB = ρ water gVsubmerged Vsubmerged WecanusethisequaLontofindthevolume ofthesubmergedpartofthebarge 2.94 ×10 6 N 3 = = = 300 m ρwater g 1000 kg/m 3 ⋅ 9.8 m/s2 FB Volumeofthesubmergedbarge (rectangularprismorcube?) Physics140,Prof.M.Nikolic Vsubmerged = l × w × h = 20 m ×10 m × h 26 Exercise:Buoyantforce Aflat-bo:omedbargeloadedwithcoalhasamassof3.0x105kg.Thebargeis20.0m longand10.0mwide. b)Whatisthedepthofthebargebelowthewaterline?contd. 3 300 m = 20 m ×10 m × h 300 m 3 h= = 1.5 m 2 200 m c)Whatwouldbethebuoyantforceonthebargethatiscompletelysubmergedin water?Densityofwoodis500kg/m3. FB = ρ water gVsubmerged Butnowthewholebargeisunderwater →Vsubmerged=Vbarge Volumeofthewholebarge Vbarge = mb arge ρb arge 3 ×105 kg 3 = = 600 m 500 kg/m 3 FB = 1000 kg/m 3 ⋅ 9.8 m/s2 ⋅ 600 m3 = 5.88 ×10 6 N Physics140,Prof.M.Nikolic 27 Fluiddynamics Orwhathappenswhenfluidsstarttomove Ifflowoffluidissmooth èsteadyorlaminarflow Aboveacertainspeed,the flowbecomesturbulentflow • Realfluids–feelexternalforcefromthesurface–viscousforce • Idealfluids–incompressible,undergoeslaminarflow,noviscosity Physics140,Prof.M.Nikolic 28 TheconLnuityequaLon–conservaLonofmass ThemassflowrateisthemassthatpassesagivenpointperunitLme. Δm ρAΔx = = ρAv Δt Δt ΔV Thevolumeflowrate: = Av Δt Physics140,Prof.M.Nikolic 29 TheconLnuityequaLon–conservaLonofmass Themassflowratesatanytwopointsmustbeequal,aslongasno fluidisbeingaddedortakenaway. Δm1 Δm2 = Δt Δt ρ1 A1v1 = ρ2 A2 v2 Ifthefluidisincompressible→ρ1=ρ2: A1v1 = A2 v2 Physics140,Prof.M.Nikolic 30 ConceptualquesLon–Bloodflow Q4 A blood platelet drifts along with the flow of blood through an artery that is partially blocked by deposits. As the platelet moves from the narrow region to the wider region, its speed A1v1 = A2 v2 A. Increases B. Remainsthesame C. Decreases CrosssecLonalareaincreasesèspeeddecreases Exercise:Fluiddynamics A1v1 = A2 v2 Awaterhosehasadiameterof3.30cm.Waterflowsthroughitataspeedof3.22m/s. Youuseaspraynozzlewithaholethathasadiameterof0.981cm.Whatisthespeed ofthewaterthatcomesoutthenozzle? Whatisgiven: d1=3.3cm=0.033m v1=3.22m/s d2=0.981cm=0.00981m A1 v2 = v1 A2 A1v1 = A2 v2 2 2 ! d1 $ ! 0.033 $ −4 2 A = π = 3.14 ⋅ # & # & = 8.54 ×10 m Theareaofthehose: 1 "2% " 2 % 2 2 !d $ ! 0.00981 $ −4 2 Theareaofthenozzle: A2 = π # 2 & = 3.14 ⋅ # & = 0.755 ×10 m "2% " 2 % 8.54 ×10−4 m 2 v2 = 3.22m/s = 36.4 m/s −4 2 0.755 ×10 m Asexpected,thespeedoutofthenozzleislarger. Physics140,Prof.M.Nikolic 32 Bernoulli’sequaLon ConservaLonofenergyforfluids ConservaLonofenergyequaLon Wtot = −ΔU + Wnc = ΔK 1 2 1 2 P1 + ρgy1 + ρv1 = P2 + ρgy 2 + ρv2 2 2 Workperunitvolume donebythefluid PotenLalenergy perunitvolume Physics140,Prof.M.Nikolic KineLcenergy perunitvolume 33 Exercise:Waterflow Apipeisdesignedtoacceptwaterinwithaspeedof2m/sataheightof1.2mbelow groundandcarryittoaheightof0.5mabovegroundwithanourlowspeedof0.4m/ satatmosphericpressure.Whatisthechangeinpressure?Densityofwateris1000 kg/m3. Whatisgiven: v1=2m/s y1=-1.2m v2=0.4m/s y2=0.5m 1 1 P1 + ρgy1 + ρv12 = P2 + ρgy 2 + ρv22 2 2 1 1 P1 − P2 = ρgy 2 + ρv22 − ρgy1 − ρv12 2 2 P1 − P2 = 1000 kg/m 3 ⋅ 9.8 m/s2 ⋅ 0.5 m − 1000 kg/m 3 ⋅ 9.8 m/s2 ⋅ (−1.2 m) 1 1 2 2 + 1000 kg/m 3 ⋅ (0.4 m/s) − 1000 kg/m 3 ⋅ (2 m/s) 2 2 P1 − P2 = 18.5 kPa Physics140,Prof.M.Nikolic 34 Exercise:Nozzleflow Anozzleisconnectedtoahorizontalhose.Thenozzleshootsoutwatermovingat25 m/s.Whatisthegaugepressureofthewaterinthehose?Neglectviscosityand assumethattheareaofthenozzleis100smallerthantheareaofthehose. Whatisgiven: v1=25m/s y1=y2=0(horizontalhose) A2=100A1 1 2 1 2 P1 + ρgy1 + ρv1 = P2 + ρgy 2 + ρv2 2 2 ΔP = P2 − P1 = WecanusetheconLnuityequaLontofindv2: 1 2 1 2 ρv1 − ρv2 2 2 A1v1 = A2 v2 v2 = A1 A v1 = 1 25 m/s = 0.25 m/s A2 100 A1 1 1 2 2 ΔP = 1000 kg/m 3 ⋅ (25 m/s) − 1000 kg/m 3 ⋅ (0.25 m/s) = 3.12 ×10 5 Pa 2 2 NotethatyoucanalwaysfindtheforcebymulLplyingpressurewitharea. Physics140,Prof.M.Nikolic 35 Viscousforce–fricLonforceforfluids Allrealfluidshavesomeviscosity. Bernoulli’sequaLononlytruefornon viscousfluids. Poiseuille’slawdescribestheviscous flowrate ΔV π ΔP 4 = r Δt 8 Lη ΔP − change in pressure L − length of the pipe r − radius of the pipe η − viscosity of the fluid Veryusefulwhendealingwitharterialblockagesèsmallerradiusèbloodneeds topumpmorepressuretomaintainthesamebloodflow. 36 Physics140,Prof.M.Nikolic Viscousdrag Viscousdragisadragforceafluidexertsonanobject movingthroughthefluidandisgivenwith Stoke’slaw: FD = 6πηrv Terminalvelocity–velocityatwhichtheobjectstopsacceleraLng –viscousdragbecomesequaltothesumofallotherforces Physics140,Prof.M.Nikolic 37 Review Pressure F P= A HydrostaLcpressure P2 = P1 + ρgd Pascal’sprinciple F1 F2 = A1 A2 Theworkdonebybothforces hastostaythesame. F1d1 = F2d2 Density m ρ= V Physics140,Prof.M.Nikolic Buoyantforce FB = ρgdA = ρgV Fb = mfluid g = ρfluid gVfluid Vfluid = Vsubmerged 38 Review TheconLnuityequaLon ρ1 A1v1 = ρ2 A2 v2 Bernoulli’sequaLon 1 2 1 2 P1 + ρgy1 + ρv1 = P2 + ρgy 2 + ρv2 2 2 Ifthedensitydoesnotchange A1v1 = A2 v2 Poiseuille’slawdescribestheviscous flowrate ΔV π ΔP 4 = r Δt 8 Lη Stoke’slaw: FD = 6πηrv Physics140,Prof.M.Nikolic 39
© Copyright 2026 Paperzz