Waldegrave School GCSE Algebra Review QUESTIONS CONTENTS Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Removing brackets Linear equations Simultaneous equations Factors Change the subject of the formula Solving quadratic equations Indices Completing the Square page 2 3 5 6 8 9 10 11 1 Waldegrave School Section 1: REMOVING BRACKETS EXERCISE A Multiply out the following brackets and simplify. 1. 7(4x + 5) 2. -3(5x - 7) 3. 5a – 4(3a - 1) 4. 4y + y(2 + 3y) 5. -3x – (x + 4) 6. 5(2x - 1) – (3x - 4) 7. (x + 2)(x + 3) 8. (t - 5)(t - 2) 9. (2x + 3y)(3x – 4y) 10. 4(x - 2)(x + 3) 11. (2y - 1)(2y + 1) 12. (3 + 5x)(4 – x) Two Special Cases Perfect Square: (x + a)2 = (x + a)(x + a) = x2 + 2ax + a2 (2x - 3)2 = (2x – 3)(2x – 3) = 4x2 – 12x + 9 EXERCISE B Difference of two squares: (x - a)(x + a) = x2 – a2 (x - 3)(x + 3) = x2 – 32 = x2 – 9 Multiply out 1. (x - 1)2 2. (3x + 5)2 3. (7x - 2)2 4. (x + 2)(x - 2) 5. (3x + 1)(3x - 1) 6. (5y - 3)(5y + 3) 2 Waldegrave School Section 2: LINEAR EQUATIONS Exercise A: Solve the following equations, showing each step in your working: 1) 2x + 5 = 19 2) 5x – 2 = 13 3) 11 – 4x = 5 4) 5 – 7x = -9 5) 11 + 3x = 8 – 2x 6) 7x + 2 = 4x – 5 Exercise B: Solve the following equations. 1) 5(2x – 4) = 4 2) 4(2 – x) = 3(x – 9) 3) 8 – (x + 3) = 4 4) 14 – 3(2x + 3) = 2 EQUATIONS CONTAINING FRACTIONS Exercise C: Solve these equations 1) 1 ( x 3) 5 2 2) 2x x 1 4 3 3 3) y y 3 5 4 3 4) x2 3 x 2 7 14 5) 7x 1 13 x 2 6) y 1 y 1 2y 5 2 3 6 7) 2x 8) 2 x 1 5x 3 2 3 5 10 1 x x 3 Waldegrave School FORMING EQUATIONS Exercise D: 1) Find 3 consecutive even numbers so that their sum is 108. 2) The perimeter of a rectangle is 79 cm. One side is three times the length of the other. Form an equation and hence find the length of each side. 3) Two girls have 72 photographs of celebrities between them. One gives 11 to the other and finds that she now has half the number her friend has. Form an equation, letting n be the number of photographs one girl had at the beginning. Hence find how many each has now. 4 Waldegrave School Section 3: SIMULTANEOUS EQUATIONS Exercise: Solve the pairs of simultaneous equations in the following questions: 1) x + 2y = 7 3x + 2y = 9 2) x + 3y = 0 3x + 2y = -7 3) 3x – 2y = 4 2x + 3y = -6 4) 9x – 2y = 25 4x – 5y = 7 5) 4a + 3b = 22 5a – 4b = 43 6) 3p + 3q = 15 2p + 5q = 14 5 Waldegrave School Section 4: FACTORISING Exercise A Factorise each of the following 1) 3x + xy 2) 4x2 – 2xy 3) pq2 – p2q 4) 3pq - 9q2 5) 2x3 – 6x2 6) 8a5b2 – 12a3b4 7) 5y(y – 1) + 3(y – 1) Factorising quadratics Exercise B Factorise 1) x2 x 6 2) x2 6 x 16 3) 2 x2 5x 2 4) 2 x 2 3x 5) 3x 2 5 x 2 6) 2 y 2 17 y 21 7) 7 y 2 10 y 3 8) 10 x2 5x 30 9) 4 x 2 25 (factorise by taking out a common factor) 6 Waldegrave School Factorising quadratics Exercise B (continued) 10) x2 3x xy 3 y 2 11) 4 x2 12 x 8 12) 16m2 81n2 13) 4 y3 9a 2 y 14) 8( x 1)2 2( x 1) 10 7 Waldegrave School Section 5: CHANGING THE SUBJECT OF A FORMULA Exercise A Make x the subject of each of these formulae: 1) y = 7x – 1 3) 4y x 2 3 2) y x5 4 4) y 4(3x 5) 9 Rearranging equations involving squares and square roots Exercise B: Make t the subject of each of the following wt 32r 1) P 3) 1 V t2h 3 5) Pa w(v t ) g 2) P wt 2 32r 4) P 2t g 6) r a bt 2 More difficult examples Exercise C Make x the subject of these formulae: 1) ax 3 bx c 2) 3( x a) k ( x 2) 3) y 2x 3 5x 2 4) x x 1 a b 8 Waldegrave School Section 6: SOLVING QUADRATIC EQUATIONS EXERCISE 1) Use factorisation to solve the following equations: a) x2 + 3x + 2 = 0 b) c) x2 = 15 – 2x 2) Find the roots of the following equations: a) x2 + 3x = 0 c) x2 – 3x – 4 = 0 b) x2 – 4x = 0 4 – x2 = 0 3) Solve the following equations either by factorising or by using the formula: a) 6x2 - 5x – 4 = 0 b) 8x2 – 24x + 10 = 0 4) Use the formula to solve the following equations to 3 significant figures. Some of the equations can’t be solved. a) x2 +7x +9 = 0 b) 6 + 3x = 8x2 c) 4x2 – x – 7 = 0 d) x2 – 3x + 18 = 0 e) 3x2 + 4x + 4 = 0 f) 3x2 = 13x – 16 9 Waldegrave School Section 7: INDICES Exercise A Simplify the following: 1) b 5b5 = 2) 3c 2 2c5 = 3) b2 c bc3 = 4) 2n6 (6n2 ) = 5) 8n8 2n3 = 6) d 11 d 9 = 7) a 8) d 3 2 (Remember that b b1 ) = 4 3 = More complex powers Exercise B: Find the value of: 1) 41/ 2 2) 271/ 3 3) 9 1/ 2 1 2 4) 5 5) 180 6) 7 1 7) 272 / 3 8) 2 3 9) 82 / 3 10) 0.04 11) 8 27 12) 1 16 1/ 2 2/3 3 / 2 Simplify each of the following: 13) 2a1/ 2 3a5 / 2 14) x3 x 2 15) x y 2 2 4 1/ 2 10 Waldegrave School Section 8: COMPLETING THE SQUARE Exercise A: Complete the square for the expressions: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 11
© Copyright 2026 Paperzz