Nanomatériaux et nanoparticules manufacturées : Risques environnementaux / Jean‐Yves Bottero, and Mélanie Auffan, Jérôme Rose, Céline Botta, Jérôme Labille, Armand Masion, N Solovitch‐Vella, E.M Hotze And the US and French members of the GDR‐I Consortium for the Environmental Implications of Nano Technology IRSN 21 Septembre 2010 Quelques chiffres: Nombre de produits répertoriés en 2009 Source: Program Emerging Nanotechnology En 2010: plus de 2000 Source Nanowerk Catégories Dans le domaine dit « du bien être » Les éléments les plus présents From Ch Robichaud PhD DUKE Univ Decembre 2010 Understanding AgNPs formation/ transformation in wastewater treatment Targeted National Sewage sludge Survey Statistical Analysis Report (Released in Jan 2009) 74 plants across the States Total metal contents Pharmaceuticals, steroids, and hormones Sludge ID 68349 (from Midwest region) Elemental Analysis Blaser, S. A. et al., Science of the Total Environment (2008). Element (mg kg-1) Mg 13500 Ag 856 Mn 1070 Al 57300 Na 6080 Ca 98900 P 57200 Cu 1720 Ti 4510 Fe 51000 Zn 1530 Spécificités extrinsèques des nanos: Relations taille, nombre, surface Specifities « intrinèsques » des Nanos Tout n’est pas NANO ! 1 NP < 30 nm méritent une considération spéciale en écotoxicité… 30 nm ? Strong increase of the surface atom number Strong surface reactivity < 30 nm M.Auffan et al., NATURE nano, 09- 2009 Environmental behavior and (eco)toxicity • Trophic transfer via food webs A terrestrial food chain A marine food chain Quaternary consumers Hawk Killer whale Snake Tertiary consumers Cod Secondary consumers Mouse Herring Transformation? Primary consumers Grasshoper Zooplancton Producers Flowers Phytoplancton bacterias.. http://www.pearsonsuccessnet.com/iText/products/0‐13‐115075‐8/text/chapter36/concept36.1.html Before bioavailability: A-Transformation from products: speciation, surface properties and stability B-transfer diffusion Ionic stren gth coagulation pH Inorganic colloïds III. D-Biodegradation Toxicity bioavailability Organic molecules pollutants diffusion Biofilms C-Interaction with matter floculation A- Transformation Ex 1:Fate of C60 fullerenes in water from hydrophobic to hydrophilic material stirring ultra ce io ugat f i r t n n stable dispersion of nanometric crystallites (nC60) Evidence of C60 hydrophilic character gravimetric measurement of H2O vapour adsorption at 30°C, and ambient pressure H2O C60 fullerite stirring number of H 2O monolayers adsorbed 10 9 8 7 6 5 4 3 2 1 0 0 Previous outgassing (110°C, 18h) 0.2 0.4 0.6 0.8 1 P (H2O) / P 0 multi‐layer adsorption of H2O irreversible modification of the surface Brant et al., 2007 JCIS Labille et al., 2006 Fullerenes Nanotubes and Carbon Nanostructures Labile et al., 2009, Langmuir, in press Chemical characterisation of AQU/nC60s FTIR 0.4 CO‐H H2O Absorbance nC60 pure C60 H2O C‐OH 0.6 0.2 1H SS NMR 0.0 fullerol 4000 3000 2000 1000 -1 Wave number (cm ) hydroxylation of the nC60 surface gives hydrophilic surface AQU/nC60 C60 14 Labille et al., langmuir, in press 2009 12 10 8 6 ppm 4 2 0 -2 -4 Ex 2: Case of Titanium dioxide-based nanocomposite • Nano‐TiO2 in sunscreen TiO2 CH3 Si CH3 O n PDMS AlOOH AlOOH 14-16 nm 50 nm PDMS Leaching of the surface layers may lead to a direct contact between water and TiO2. TiO2 can then generate ROS (O2• O2- OH •) TiO2 UV TiO2 O2• O2- OH • J Labille et al (Env Pollution) 2010 and M Auffan et al, ES and T et al, ES and T 2010 UV alteration of PDMS coating ? B‐Transfert and diffusion in porous media Case of TiO2 in sand Case of Nano Ag° 0.6 NaCl attachment coefficient 0.5 CaCl2 NaCl + gellan 0.4 NaCl + A. tannic 0.3 0.2 0.1 0 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 salt concentration (mol/L) N Solovitch et al, Environmental Science And Technology 2010 Sand Sand and FeOOH Shihong Lin et al , Duke C‐Effect of the surface functionalisation on the NP dispersion Coating is often used by suppliers to improve NP dispersion, but is rarely specified. electrostatic or sterric repulsions favour dispersion bio‐ available stabilisation ionic strength pH no surface charge favours aggregation not bio‐ available aggregation C‐Aggregation kinetic vs adsorption onto biological surface: CeO2 + salt + cells In water : stable NPs Initial conditions: 3 mg/l NPs 108 cells/ml only adsorption In medium : unstable NPs = adsorption + aggregation t ~ 1s Zeyons et al, ES and T 2009 Adsorption of CeO2 onto biological membrane and floculation Synechocystis PCC 6803 E. coli Zeyon, Thill et al Forte affinité vis à vis du vivant Ex E Coli or Synechocystis cells mais pas de toxicité si absence de contact direct Zeyon, Thill et a ES and T 2008 et Langmuir 2009 D‐ Biodisponibility: Strong affinity for Eucaryotes cells and endocytosis: ex γFe2O3 or CeO2 M.Auffan et al, ES and T 2006; M Auffan et al, Nanotoxicology 2009 Toxicité: mécanismes Adapted from A Nel UCLA 2009 Environmental behavior and (eco)toxicity • Trophic transfer via food webs A terrestrial food chain A marine food chain Quaternary consumers Hawk Killer whale Snake Tertiary consumers Cod Secondary consumers Mouse Herring Transformation? Primary consumers Grasshoper Zooplancton Majorité des travaux Producers Flowers Phytoplancton bacterias.. http://www.pearsonsuccessnet.com/iText/products/0‐13‐115075‐8/text/chapter36/concept36.1.html Toxicité vis à vis des micro‐organismes bactériens Dissolution/aggregation NP Reactivity ROS production Membrane Integrity test Rouge neutre O2‐, O2•‐, OH• Cristalline Defects TEM, Diffraction mitochondrial activity ROS detection WST1 test Surface Spéciation and reactivity EXAFS, XANES, RMN, FTIR Internalisation TEM; Micro‐fluorescence.. oxydant stress Anti‐oxydants, mutant strains ADN synchrotron ROS Cytotoxicity comets tests Chromosomes Micronuclei tests Génotoxicity Réglons la question: Est ce que l'agrégation contrôle la toxicité ? Nano‐γFe2O3 enrobées Nano‐CeO2 Toxique Non toxique 50‐100 nm Cellules Eucaryotes 2.5‐3 μm Two examples CeO2 = Slow Chemical solubility Fe° = Very weak stability Interactions NP / procaryote cells on mutant and wild strains Fe0 CeO2 E.coli 7nm γFe2O3 E.coli < 20nm E.coli 6nm No cytotoxicity Cytotoxicity ≤ 10 mg/L 30% of Ce(IV) ‐> Ce(III) on the surface of Cerine Ce4+ e‐,ROS production Cytotoxic > 70 mg/L No structiural modification Oxydation of Fe° Dissolution / precipitation Fe0 No cytotoxic γFeOOH γFe23+O3 Ce3+ Fe3O4 Fe2+, ROS Damage membrane Toxicity is associated to the chemical instability of NP Redox cycle (Ce3+/Ce4+) Fenton Reaction (Fe2+) Stress oxydatif through ROS production stable Zeyons et al, ES and T 2008; M Auffan et al, Nanotoxicology 2009 Interactions NP with eucaryote cells CeO2 7nm Ce4+ Reduction of Ce(IV) in Ce(III) e‐,ROS Ce3+ Stress oxydatif ADN and chromosomic Damages 60 mg/L 0,06 mg/L control micronoyaux No cytotoxic effects but … … génotoxicity at very low concentrations > 0,06 mg/L Xanes at L3 edge of Ce = 30% of reduced surface atoms M.Auffan et al, ES and T 2006; M Auffan et al, Nanotoxicology 2009 Environmental behavior and (eco)toxicity • Trophic transfer via food webs A terrestrial food chain A marine food chain Quaternary consumers Hawk Killer whale Snake Tertiary consumers Cod Secondary consumers Mouse Herring Travaux qui se développent: cf I‐CEINT = mésocosmes Primary consumers Grasshoper Zooplancton Producers Flowers Phytoplancton bacterias.. http://www.pearsonsuccessnet.com/iText/products/0‐13‐115075‐8/text/chapter36/concept36.1.html Physical-chemical characterization and ecotoxicity of residues from alteration of engineered nanomaterials Ex: Ag°, Solar creams with TiO2 Toxicity of coated‐silver nanoparticles : C.elegans PVP coated Nano‐Ag0 21 ± 17 nm Ag0 Caenorhabditis elegans Wild and transgenic strains Mtl2: deficient in protein involved in metal regulation and detoxification M Auffan In collaboration with J. Meyer (DUKE university, USA) Toxicity of coated‐silver nanoparticles : C.elegans Dissolved Ag effect 24h Mtl2 strain more sensitive than the wild 24h 48h 48h 72h 72h Wild Mtl2 PVP‐nanoAg In collaboration with J. Meyer (DUKE university, USA) Toxicity across a salinity gradient : Fundulus heteroclitus Simulated silver speciation Fundulus heteroclitus Assessing toxicity across a salinity gradient Sea Water Tolerate Low Salt PVP coated nanoAg0 Gum Arabic coated nanoAg0 21 ± 17 nm 7 ± 3 nm In collaboration with C. Matson, R. Digiulio (DUKE university, USA) Toxicity across a salinity gradient Embryotoxicity of PVP‐nanoAg0: ‘V‐curve’ shape Match Match Amount of dissolved Ag after interaction with the embryo Embryotoxicity: GumArabic‐nanoAg0 > PVP‐nanoAg0 In collaboration with C. Matson, R. Digiulio (DUKE university, USA) Example: Nanocomposite in sunscreen PDMS = polydimethylsiloxane Al(OH)3 TiO2 Al(OH)3 9 thin amorphous layer 9 improve PDMS coating 9 protection against TiO2 photocatalytic effects PDMS = polydimethylsiloxane 9 hydrophobic properties 9enhance dispersion of the nanomaterial CH3 Si 14‐20nm 1O 2, O2 y‐, OHy CH3 O n Alteration of nanocomposites: conclusion UV/Vis UV, stirring, water X Hydrophobic surface Hydrophilic surface No photocatalytic properties Localization and toxicity on biological organisms ? O2 - Introduction into chain food CCD Camera ¾Adsorption of Ti on algae Titanium map X-Ray beam size: 10 mm X-Ray source: Rh X-Ray tube voltage: 30 kV Counting time: 9x360 Localization and ecotoxic studies CCD image Adults Daphnia 9d exposure Concentration: 10 mg/l Calcium map Titanium map Combined map XGT5000 Horiba Jobin Yvon X-Ray beam size: 10 mm X-Ray source: Rh X-Ray tube voltage: 30 kV Counting time: 20x360 Ecotoxicity results on Danio rerio % hatching Danio rerio embryos hatching time Days of exposure (post fertilization) ¾ Premature hatching of embryos for all tested concentrations ¾ 100% hatching at 3 days post fertilization in contaminated media ¾ Living larvae Ecotoxicity results on Danio rerio % of alive larvae Danio rerio larvae survival time Days of exposure ¾For all tested concentrations: significant effect on survival time/control ¾First mortalities observed in contaminated solutions from 8d contact Conclusion and future • The complexity of the studies come from the complexity of the NM or NP in term of the chemistry, stability and reactivity. M Auffan et al, Nature Nano 09‐2009 If the mechanisms of the toxicity must be studied on « laboratory » NP, the researches must focused also on engineered products containing NP knowing that the formulations are complexe. As the studies on the ecosystems are at the beginning we need to coordinate the researches at the national level to have a systemic approach allowing to assess the toxicity in food webs and Prioritize in vivo testing at increasing trophic levels Try to be predicitive from the: ‐ knowledge and modelling of the interaction mechanisms of « nano » with water, components, biota ‐Modelling of the kinetic nteractions of NP in the aqueous media (water molecules, solutes, aggregation …… Study the interactions with biota within mesocosms managed by competent people and gathering the best labs around them. La toxicité des résidus des nanomatériaux s’étudiera via des chaines strophiques A terrestrial food chain * GDR‐I I‐CEINT = CEA‐CNRS‐ 5 Univ US * Projet MESONNET ANR P2N (2011‐2014) * FR ECCOREV A marine food chain Quaternary consumers Hawk Killer whale Snake Tertiary consumers Cod Secondary consumers Mouse Herring Primary consumers Grasshoper Zooplancton Producers Flowers Phytoplancton bacterias.. http://www.pearsonsuccessnet.com/iText/products/0‐13‐115075‐8/text/chapter36/concept36.1.html Thanks to the french partners in I‐CEINT and particularly to: C Chanéac; J.P Jolivet; A Thill; A Botta, J.L Hazeman, O Proux…. And all the partners from CIRIMAT (Toulouse), ECOLAB (Toulouse) , HYGHES 5starsbourg), LCBM (Grenoble), , LBME (Marseille); LIEBE (Metz); IMEP (Marseille); IBEB (Cadarache) Inst Neel (Grenoble); ESRF (Fame beam line) Thanks to CNRS and CEA And also thanks to the american partners in I‐CEINT: M.R Wiesner (Duke); G Lowry (Carnegie‐Mellon); P Bertsch (Kentuky University); G Brown (Stanford); P Vikesland ……and many others
© Copyright 2026 Paperzz