Math 1080: Section 5.3 Name___________________________________ Use Identities to find the exact value. 1) cos -75° 1) 2) cos 165° 2) 3) cos 255° 3) 4) cos 4) 5) cos 12 19 12 5) 6) cos 36° cos 24° - sin 36° sin 24° 6) 7 5 7 5 cos + sin sin 12 12 12 12 7) 7) cos Use the cofunction identities to find an angle 8) tan = cot (30°+ 5 ) that makes the statement true. 9) sin (3 - 17°) = cos ( + 43°) 10) sin 8) 9) = cos (4 + 60°) 10) 11) tan (2 - 140°) = cot ( + 5°) 11) 12) cot 5 = tan 4 12) 13) sec (6 + 17°) = csc (2 - 7°) 13) 14) sin ( + 4°) = cos ( + 6°) 14) 15) cot (2 - 20°) = tan ( - 10°) 15) Use identities to write each expression as a function of . 16) cos ( - ) 17) cos + 16) 17) 2 1 18) cos ( + 270°) 18) Find the exact value of the expression using the provided information. 1 1 19) Find cos(s + t) given that cos s = , with s in quadrant I, and sin t = - , with t in quadrant 3 2 19) IV. 20) Find cos(s + t) given that sin s = - 1 1 , with s in quadrant IV, and sin t = , with t in 2 4 20) quadrant II. 21) Find cos(s + t) given that cos s = 1 1 , with s in quadrant I, and sin t = , with t in quadrant II. 3 4 22) Find cos(s - t) given that cos s = - 21) 12 8 , with s in quadrant II, and sin t = , with t in 13 17 22) 1 3 , with s in quadrant III, and cos t = - , with t in 2 5 23) 3 5 , with s in quadrant IV, and sin t = , with t in 3 6 24) quadrant II. 23) Find cos(s - t) given that cos s = quadrant III. 24) Find cos(s - t) given that sin s = quadrant IV. Verify that the equation is an identity. 3 1 = cos x - sin x 25) cos x + 6 2 2 26) cos 27) sec 28) 2 2 25) - x = -sin x 26) + x = -csc x cos( + ) = cot cos sin 27) - tan 28) 29) cos(x - y) - cos(x + y) = 2 sin x sin y 30) 29) cos(x - y) 1 + tan x tan y = cos(x + y) 1 - tan x tan y 30) 2 Solve the problem. 31) The output voltage of a generator is given by V = 162 cos 2 ft - . Express the voltage as 31) 32) A vibrating wire has a vertical displacement given by y = 9(cos 2 x cos bt + sin 2 x sin bt). Assume b and t are constants. Write y as a cosine function of x. 32) 33) In a particular situation, the pressure, P, exerted on a person's eardrum at a distance of 9 a feet from the source is given by the function: P(t) = cos (2n - ct) , where n is a positive 9 33) 6 the sum of a sine and a cosine function. integer. Use the difference identity for cosine to simplify P in this situation. 3
© Copyright 2026 Paperzz