Page 1 Math 151 Fall 2016 Yi-Ching Wang Section 4.6: Inverse Trigonometric Functions Inverse sine function arcsin x = sin−1 x = y ⇔ sin y = x Cancellation Equations: π π ≤x≤ 2 2 −1 sin(sin x) = x for − 1 ≤ x ≤ 1 sin−1 (sin x) = x for − Inverse cosine function arccos x = cos−1 x = y ⇔ cos y = x Cancellation Equations: cos−1 (cos x) = x for 0 ≤ x ≤ π cos(cos−1 x) = x for − 1 ≤ x ≤ 1 Inverse tangent function arctan x = tan−1 x = y ⇔ tan y = x Page 2 Math 151 Fall 2016 Yi-Ching Wang Cancellation Equations: π π ≤x≤ 2 2 −1 tan(tan x) = x for − ∞ ≤ x ≤ ∞ tan−1 (tan x) = x for − Inverse cotangent function arccotx = cot−1 x = y ⇔ cot y = x Inverse secant function arcsecx = sec−1 x = y ⇔ sec y = x Inverse cosecant function arccscx = csc−1 x = y ⇔ csc y = x Math 151 Fall 2016 Yi-Ching Wang Example: Find the exact value of the expression. √ ! 3 = (1) sin−1 2 (2) sin −1 −1 2 (4) cos = √ ! 2 = 2 (3) cos−1 −1 −1 2 = 5π (5) arcsin sin 4 = 5π (6) arccos cos = 4 Page 3 Math 151 Fall 2016 Yi-Ching Wang 7π (7) arctan tan = 4 √ (8) sin arcsin 3 = Example: Find the exact value of the expression. 1 −1 (1) cos sin = 2 2 (2) sec tan−1 = 3 (3) sin (tan−1 x) = (4) cos sin−1 x = Page 4 Page 5 Math 151 Fall 2016 Yi-Ching Wang Derivatives of Inverse Trigonometric Functions d 1 sin−1 (x) = √ dx 1 − x2 d 1 cos−1 (x) = − √ dx 1 − x2 1 d tan−1 (x) = dx 1 + x2 d 1 csc−1 (x) = − √ dx x x2 − 1 d 1 sec−1 (x) = √ dx x x2 − 1 d 1 cot−1 (x) = − dx 1 + x2 Example: Find the derivative. 2 (1) y = sin−1 (2x) (2) y = cos−1 (4x2 ) (3) y = arctan(sin(4x)) −1 (x) (4) y = xsec 0 Reference: Math 151 lecture notes from Joe Kahlig and Mariya Vorobets.
© Copyright 2026 Paperzz