Handbook of Electrochemical Impedance Spectroscopy - Im Z * 2 1 0 0 1 Re Z * ELECTRICAL CIRCUITS CONTAINING CPEs ER@SE/LEPMI J.-P. Diard, B. Le Gorrec, C. Montella Hosted by Bio-Logic @ www.bio-logic.info March 29, 2013 2 Contents 1 Circuits containing one CPE 1.1 Constant Phase Element (CPE), symbol Q . 1.2 Circuit (R+Q) . . . . . . . . . . . . . . . . . 1.2.1 Impedance . . . . . . . . . . . . . . . 1.2.2 Reduced impedance . . . . . . . . . . 1.3 Circuit (R/Q) . . . . . . . . . . . . . . . . . . 1.3.1 Impedance . . . . . . . . . . . . . . . 1.3.2 Reduced impedance . . . . . . . . . . 1.3.3 Pseudocapacitance #1 . . . . . . . . . 1.3.4 Pseudocapacitance #2 . . . . . . . . . 1.4 Circuit (R/Q)+(R/Q)+ .. (Voigt) . . . . . . 1.5 Circuit (R1 +(R2 /Q2 )) . . . . . . . . . . . . . 1.5.1 Impedance . . . . . . . . . . . . . . . 1.5.2 Reduced impedance . . . . . . . . . . 1.6 Circuit (R1 /(R2 +Q2 )) . . . . . . . . . . . . . 1.6.1 Impedance . . . . . . . . . . . . . . . 1.6.2 Reduced impedance . . . . . . . . . . 1.7 Transformation formulae between(R+(R/Q)) and (R/(R+Q)) . . . . . . . . . . . . . . . . . 1.7.1 α21 = α22 . . . . . . . . . . . . . . . . 1.7.2 α21 6= α22 . . . . . . . . . . . . . . . . 2 Circuits made of two CPEs 2.1 Circuit (Q1 +Q2 ) . . . . . . 2.1.1 α1 = α2 = α . . . . 2.1.2 α1 6= α2 . . . . . . . 2.1.3 Reduced impedance 2.2 Circuit (Q1 /Q2 ) . . . . . . 2.2.1 α1 = α2 = α . . . . 2.2.2 α1 6= α2 . . . . . . . 2.2.3 Reduced impedance 3 Circuits made of one R and 3.1 Circuit ((R1 /Q1 ) + Q2 ) . 3.1.1 α1 = α2 = α . . . 3.1.2 α1 6= α2 . . . . . . 3.2 Circuit ((R1 + Q1 )/Q2 ) . 3.2.1 α1 = α2 = α . . . . . . . . . . . . . . . . . . . two . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . 5 5 5 5 6 7 7 7 7 8 9 9 10 10 10 11 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 13 13 14 16 16 16 16 CPEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 20 21 21 . . . . . . . . . . . . . . . . . . . . . . . . 4 CONTENTS 3.2.2 α1 6= α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Circuits made of two Rs and two CPEs 4.1 Circuit ((R1 /Q1 )+(R2 /Q2 )) . . . . . . . 4.2 Circuit ((R1 +(R2 /Q2 ))/Q1 ) . . . . . . . 4.3 Circuit ((Q1 +(R2 /Q2 ))/R1 ) . . . . . . . 4.4 Circuit (((Q2 +R2 )/R1 )/Q1 ) . . . . . . . A Symbols for CPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 23 23 24 25 26 29 Chapter 1 Circuits containing one CPE 1.1 Constant Phase Element (CPE), symbol Q Figure 1.1: Most often used symbol for CPE (see also the Appendix A). Z= sα 1 cα , Im Z = − α , Re Z = α Qω Q ωα Q (i ω) cα = cos( |Z| = πα πα ) , sα = sin( ) 2 2 πα 1 , φZ = − Q ωα 2 The Q unit (F cm−2 sα−1 ) depends on α (1 ). 1.2 1.2.1 Circuit (R+Q) Impedance Z(ω) = R + 1 sα 1 cα , Im Z = − α , Re Z = R + Q ωα Q ωα Q (i ω) Different equations for CPE: Z = 1 Q [5], Z = [26]. (i ω)1−α (Q i ω)α 5 CHAPTER 1. CIRCUITS CONTAINING ONE CPE Im Y - Im Z 6 0 Π - Α 2 0 0 Π Α 2 0 Re Z Re Y Figure 1.2: Nyquist diagram of the impedance and admittance for the CPE element, plotted for α = 0.8. The arrows always indicate the increasing frequency direction. Q R Figure 1.3: Circuit (R+Q). 1.2.2 Reduced impedance Z ∗ (ω) = Z(ω) 1 , τ = RQ =1+ R τ (i ω)α The τ unit depends on α: uτ = sα . Z ∗ (u) = 1 + 1 , u = ω τ 1/α (i u)α 0 0.5 uc =1 1 0 0 1 Re Z* uc =1 Im Y* - Im Z* 2 2 0 1 Re Y* Figure 1.4: Nyquist diagram of the reduced impedance and admittance (Y ∗ = R Y ) for the (R+Q) circuit, plotted for α = 0.8. 1.3. CIRCUIT (R/Q) 1.3 7 Circuit (R/Q) Q R Figure 1.5: Circuit (R/Q). 1.3.1 Impedance Z(ω) = Re Z(ω) = 1.3.2 R ; τ = RQ 1 + τ (i ω)α R τ ω α sα R (1 + τ ω α cα ) ; Im Z(ω) = − 1 + τ 2 ω 2 α + 2 τ ω α cα 1 + τ 2 ω 2 α + 2 τ ω α cα Reduced impedance Z ∗ (ω) = 1 Z(ω) = α ; τ = RQ R 1 + τ (i ω) 1 + τ ω α cα τ ω α sα ; Im Z ∗ (ω) = − 2 α α 2 1 + ω + 2 τ ω cα 1 + τ ω 2 α + 2 τ ω α cα α τ ω −1+α −1 + τ 2 ω 2 α sα dIm Z ∗ (ω) = 0 ⇒ ωcα = 1/τ [6] = dω (1 + τ 2 ω 2 α + 2 τ ω α cα )2 Re Z ∗ (ω) = τ2 Re Z ∗ (ωc ) = 1/2 , Im Z ∗ (ωc ) = − α= sα 2 (1 + cα ) ! 2 2 arccos −1 + 2 π 1 + 4 Im Z ∗ (ωc ) Z ∗ (u) = 1 1/α α, u = ωτ 1 + (i u) (Fig. 1.6) 1.3.3 Pseudocapacitance #1 The value of the pseudocapacitance C (C/F cm−2 ) for the (R/C) circuit giving the same characteristic frequency than that of the (R/Q) circuit (Fig. 1.7) is obtained from: 1 1 1 1 ωc = = ⇒ C = Q α R α −1 RC (R Q)1/α 8 CHAPTER 1. CIRCUITS CONTAINING ONE CPE 0.5 uc =1 - Im Z* 0 Im Y* 2 0 0 1 uc =1 1 0 * Re Z 1 Re Y* 2 Figure 1.6: Nyquist diagram of the reduced impedance (depressed semi-circle [22]) and admittance (Y ∗ = R Y ) for the (R/Q) circuit, plotted for α = 0.8. Q C R R 1 Ωc = 0 Ωc = 1HRCL HRQL 1Α 0 0 0 R R Figure 1.7: (R/Q) and (R/C) circuits with the same characteristic frequency at the apex (or summit) of impedance arc. 1.3.4 Pseudocapacitance #2 The value of the pseudocapacitance C (C/F cm−2 ) for the (RC /C) circuit giving the same impedance for the characteristic frequency of the (RQ /Q) circuit (Fig. 1.7) is obtained from [2, 9]: (1/α)−1 C = Q1/α RQ sin(α π/2), RC = RQ 2 (cos(α π/4))2 with: τ(RC /C) = (RQ Q)1/α tan(α π/4) 1.4. CIRCUIT (R/Q)+(R/Q)+ .. (VOIGT) 9 Q C RQ RC 1 - Im Z Ωc = 0 1Α JRQ QN 0 RC RQ Re Z Figure 1.8: (RQ /Q) and (RC /C) circuits with the same impedance for the characteristic frequency of the (RQ /Q) circuit. 1.4 Circuit (R/Q)+(R/Q)+ .. (Voigt) nRQ Z(ω) = X i=1 Ri ; τi = Ri Qi 1 + τi (i ω)αi nRQ Re Z(ω) = X i=1 Ri (1 + τi ω αi cαi ) 1 + τi2 ω 2 αi + 2 τi ω αi cαi ) nRQ Im Z(ω) = − X i=1 1.5 1+ τi2 Ri τi ω αi sαi ω 2 αi + 2 τi ω αi cαi Circuit (R1 +(R2/Q2 )) Q2 R1 R2 Figure 1.9: Circuit (R1 +(R2 /Q2 )). 10 CHAPTER 1. CIRCUITS CONTAINING ONE CPE 1.5.1 Impedance 1 Z(ω) = R1 + (i ω)α2 Q2 + Z(ω) = 1.5.2 1 R2 R1 R2 Q2 (R1 + R2 ) (1 + (i ω)α2 τ2 ) , τ1 = R2 Q2 , τ2 = 1 + (i ω)α2 τ1 R1 + R2 Reduced impedance Z ∗ (u) = 1/α2 u = τ1 Z(u) 1 + T (i u)α2 = R1 + R2 1 + (i u)α2 (1.1) ω, T = τ2 /τ1 = R1 /(R1 + R2 ) < 1 Re Z ∗ (u) = T cα uα2 + cα uα2 + T u2α2 + 1 2 cα uα2 + u2α2 + 1 Im Z ∗ (u) = − (1 − T ) uα2 sα 2 cα uα2 + u2α2 + 1 1 1 Τ1 1Α Τ2 1Α 0 0 1 T 1Α 0 R1 +R2 R1 uc = 1 - Im Z * - Im Z Ωc = 0 T 1 Re Z * Re Z Figure 1.10: Nyquist diagrams of the impedance and reduced impedance for the (R1 +(R2 /Q2 )) circuit. 1.6 Circuit (R1 /(R2 +Q2 )) R1 Q2 R2 Figure 1.11: Circuit (R1 /(R2 +Q2 )). 1.7. TRANSFORMATION FORMULAE BETWEEN(R+(R/Q)) AND (R/(R+Q))11 1.6.1 Impedance R1 (1 + τ2 (i ω)α2 ) , τ1 = (R1 + R2 ) Q2 , τ2 = R2 Q2 1 + τ1 (i ω)α2 2 R1 cos πα (τ1 + τ2 ) ω α2 + τ1 τ2 ω 2α2 + 1 2 Re Z(ω) = 2 ω α2 + 1 τ1 τ1 ω α2 + 2 cos πα 2 2 ω α2 sin πα R1 (τ1 − τ2 ) 2 Im Z(ω) = − 2 ω α2 + 1 τ1 τ1 ω α2 + 2 cos πα 2 Z(ω) = 1.6.2 Reduced impedance Z ∗ (u) = 1/α2 u = τ1 Z(u) 1 + T (i u)α2 = R1 1 + (i u)α2 ω, T = τ2 /τ1 = R2 /(R1 + R2 ) < 1 cf. Eq. (1.1) and Fig. 1.10. 1.7 1.7.1 Transformation formulae between(R+(R/Q)) and (R/(R+Q)) α21 = α22 Q21 R12 R11 Q22 R21 R22 Figure 1.12: The (R+(R/Q)) and (R/(R+Q)) circuits are non-distinguishable for α21 = α22 [1]. Transformations formulae (R+(R/Q)) → (R/(R+Q)) R12 = R11 + R21 , R22 = 2 2 R11 Q21 R21 + R11 , Q22 = R21 (R11 + R21 ) 2 Transformations formulae (R/(R+Q))→(R+(R/Q)) Q21 = 1.7.2 2 R12 R22 R12 Q22 (R12 + R22 ) 2 , R11 = , R21 = 2 R12 R12 + R22 R12 + R22 α21 6= α22 The (R+(R/Q)) and (R/(R+Q)) circuits (Fig. 1.12) are distinguishable for α21 6= α22 12 CHAPTER 1. CIRCUITS CONTAINING ONE CPE Chapter 2 Circuits made of two CPEs 2.1 Circuit (Q1 +Q2) Q1 Q2 Figure 2.1: Circuit (Q1 +Q2 ). 2.1.1 α1 = α2 = α Z(ω) = 1 1 + Q1 Q2 1 Q1 Q2 1 = , Q= (i ω)α Q (i ω)α Q1 + Q2 cf. § 1.1. 2.1.2 α1 6= α2 Impedance 1 1 Q1 (i ω)α1 + Q2 (i ω)α2 + = α α 1 2 Q1 (i ω) Q2 (i ω) Q1 Q2 (i ω)α1 +α2 −α −α 1 2 cos πα cos πα ω 1 ω 2 2 2 Re Z(ω) = + Q1 Q2 −α 2 1 sin πα ω −α1 ω 2 sin πα 2 2 − Im Z(ω) = − Q1 Q2 Z(ω) = |ZQ1 | = |ZQ2 | ⇒ ω = ωc = 13 Q2 Q1 α 1 1 −α2 14 CHAPTER 2. CIRCUITS MADE OF TWO CPES • α1 < α2 (Figs. 2.2 and 2.3) ω → 0 ⇒ Z(ω) ≈ 1 1 , ω → ∞ ⇒ Z(ω) ≈ α 2 Q2 (i ω) Q1 (i ω)α1 • α1 > α2 ω → 0 ⇒ Z(ω) ≈ 1 1 , ω → ∞ ⇒ Z(ω) ≈ Q1 (i ω)α1 Q2 (i ω)α2 4 - Im ZW logH- Im ZWL 200 1 0 0 200 1 Re ZW 4 logHRe ZWL Figure 2.2: Nyquist and log Nyquist [8] diagrams of the impedance for the (Q1 +Q2 ) circuit, plotted for Q1 = 10−2 F cm−2 sα1 −1 , Q2 = 10−2 F cm−2 sα2 −1 , α1 = 0.6, α2 = 0.9 (α1 < α2 ). Dots: ωc = (Q2 /Q1 )1/(α1−α2 ) . -Α1 Π2 ΦZ ° log ÈZWÈ -45 - Α2 5 - Α1 0 -Α2 Π2 -5 HQ2 Q1 L1HΑ1 -Α2 L log ΩHrd s-1 L -90 5 -5 HQ2 Q1 L1HΑ1 -Α2 L 5 log ΩHrd s-1 L Figure 2.3: Bode diagrams of the impedance for the (Q1 +Q2 ) circuit. Same values of parameters as in Fig. 2.2. α1 < α2 . 2.1.3 Reduced impedance Z ∗ (u) = Q1 ωcα1 Z(ω) = 1 ω 1 + , u= α α 1 2 (i u) (i u) ωc 2.1. CIRCUIT (Q1 +Q2 ) 15 2 log H- Im Z * L - Im Z * 3 2 1 0 0 -2 0 1 2 Re Z -2 3 0 2 log HRe Z L * * Figure 2.4: Nyquist and log Nyquist [8] diagrams of the reduced impedance for the (Q1 +Q2 ) circuit, plotted for α1 = 0.6, α2 = 0.9 (α1 < α2 ). Dots: uc = 1. -45 - Α2 -Α1 Π2 0 - Α1 ΦZ * ° log ÈZ * È 3 -Α2 Π2 -3 -90 -3 0 log u 3 -3 0 3 log u Figure 2.5: Bode diagrams of the impedance for the (Q1 +Q2 ) circuit. Same values of parameters as in Fig. 2.4. α1 < α2 . 16 CHAPTER 2. CIRCUITS MADE OF TWO CPES 2.2 Circuit (Q1 /Q2 ) Q2 Q1 Figure 2.6: Circuit (Q1 /Q2 ). 2.2.1 α1 = α2 = α Z(ω) = 1 1 = , Q = Q1 + Q2 (Q1 + Q2 ) (i ω)α Q (i ω)α cf. § 1.1. 2.2.2 α1 6= α2 Impedance 1 Q1 (i ω)α1 + Q2 (i ω)α2 1 2 cos πα Q1 ω α1 + cos πα Q2 ω α2 2 2 Re Z(ω) = 2 2α 1 Q1 ω 1 + Q22 ω 2α2 + 2 cos 2 π (α1 − α2 ) Q1 Q2 ω α1 +α2 1 2 sin πα Q1 ω α1 + sin πα Q2 ω α2 2 2 Im Z(ω) = − 2 2α Q1 ω 1 + Q22 ω 2α2 + 2 cos 12 π (α1 − α2 ) Q1 Q2 ω α1 +α2 Z(ω) = • α1 < α2 (Figs. 2.7 and 2.8) ω → 0 ⇒ Z(ω) ≈ 1 1 , ω → ∞ ⇒ Z(ω) ≈ α 1 Q1 (i ω) Q2 (i ω)α2 • α1 > α2 ω → 0 ⇒ Z(ω) ≈ 2.2.3 1 1 , ω → ∞ ⇒ Z(ω) ≈ Q2 (i ω)α2 Q1 (i ω)α1 Reduced impedance Z ∗ (u) = Q1 ωcα1 Z(ω) = (i u)α1 ω 1 , u= α 2 + (i u) ωc 2.2. CIRCUIT (Q1 /Q2 ) 17 logH- Im ZWL - Im ZW 3 50 0 0 0 50 0 Re ZW 3 logHRe ZWL Figure 2.7: Nyquist and log Nyquist [8] diagrams of the impedance for the (Q1 /Q2 ) circuit plotted for Q1 = 10−2 F cm−2 sα1 −1 , Q2 = 10−2 F cm−2 sα2 −1 , α1 = 0.6, α2 = 0.9 (α1 < α2 ). Dots: ωc = (Q2 /Q1 )1/(α1−α2 ) . -45 -Α1 Π2 - Α1 ΦZ ° log ÈZWÈ 5 0 - Α2 -5 HQ2 Q1 L1HΑ1 -Α2 L -Α2 Π2 -90 -5 5 log ΩHrd s-1 L HQ2 Q1 L1HΑ1 -Α2 L 5 log ΩHrd s-1 L Figure 2.8: Bode diagrams of the impedance for the (Q1 /Q2 ) circuit. Same values of parameters as in Fig. 2.7. α1 < α2 . 2 - Im Z * log H- Im Z * L 1 0 0 -2 0 1 Re Z * -2 0 2 log HRe Z * L Figure 2.9: Nyquist and log Nyquist [8] diagrams of the reduced impedance for the (Q1 /Q2 ) circuit, plotted for α1 = 0.6, α2 = 0.9 (α1 < α2 ). Dots: uc = 1. 18 CHAPTER 2. CIRCUITS MADE OF TWO CPES -45 3 0 - Α1 ΦZ * ° log ÈZ * È -Α1 Π2 - Α2 -3 -Α2 Π2 -90 -3 0 log u 3 -3 0 3 log u Figure 2.10: Bode diagrams of the impedance for the (Q1 /Q2 ) circuit. Same values of parameters as in Fig. 2.9. α1 < α2 . Chapter 3 Circuits made of one R and two CPEs 3.1 Circuit ((R1/Q1) + Q2 ) Q1 Q2 R1 Figure 3.1: Circuit ((R1 /Q1 )+Q2 ). 3.1.1 α1 = α2 = α Impedance Z(ω) = Z(ω) = 1 1 + α 1 Q (i 2 ω) + Q1 (i ω)α R1 1 + (i ω)α τ2 , τ1 = R1 Q1 , τ2 = (Q1 + Q2 ) R1 , τ1 < τ2 Q2 (1 + (i ω)α τ1 ) (i ω)α Re Z(ω) = − cos πα 2 τ1 τ2 ω 2α + 1 ω −α + cos(πα)τ1 + τ2 ωα + 1 Q2 τ1 τ1 ω α + 2 cos πα 2 τ1 τ2 ω 2α + 1 ω −α + sin(πα)τ1 sin πα 2 Im Z(ω) = − ωα + 1 Q2 τ1 τ1 ω α + 2 cos πα 2 19 20 CHAPTER 3. CIRCUITS MADE OF ONE R AND TWO CPES Reduced impedance Z ∗ (u) = 1 + T (i u)α 1 Z(u) = R1 T − 1 (i u)α (1 + (i u)α ) (3.1) u = ω τ 1/α , T = τ2 /τ1 = 1 + Q2 /Q1 > 1 u−α (T + cos(απ))uα + T u2α + 1 cos απ 2 Re Z (u) = uα + u2α + 1 (T − 1) 2 cos απ 2 ! απ 1 u2α ∗ −α Im Z (u) = u − sin 1−T 2 2 cos απ uα + u2α + 1 2 ∗ - Im Z * 2 1 0 0 1 Re Z * Figure 3.2: Nyquist diagram of the reduced impedance for the ((R1 /Q1 )+Q2 ) circuit (Fig. 3.1, Eq. (3.1)), plotted for T = 4, 9, 90 and α = 0.85. The line thickness increases with increasing T . Dots: reduced characteristic angular frequency uc1 = 1; circles: reduced characteristic angular frequency uc2 = 1/T 1/α (φuc1 = φuc2 ). 3.1.2 α1 6= α2 Impedance 1 1 + 1 Q2 (i ω)α2 + Q1 (i ω)α1 R1 −α πα2 1 R1 cos πα cos 2 ω 2 Q1 R1 ω α1 + 1 2 + Re Z(ω) = 1 Q2 ω α1 + 1 Q1 R1 Q1 R1 ω α1 + 2 cos πα 2 −α 1 2 sin πα sin πα Q1 R12 ω α1 ω 2 2 2 Im Z(ω) = − − 1 Q2 ω α1 + 1 Q1 R1 Q1 R1 ω α1 + 2 cos πα 2 Z(ω) = 3.2. CIRCUIT ((R1 + Q1 )/Q2 ) 21 Q1 Q2 R1 Figure 3.3: Circuit ((R1 +Q2 )/Q1 ). 3.2 Circuit ((R1 + Q1 )/Q2 ) 3.2.1 α1 = α2 = α Impedance 1 Z(ω) = 1 (i ω)α Q1 + R1 + 1 (i ω)α Q2 = 1 + Q2 R1 (i ω)α (i ω)α Q1 Q2 R1 (i ω)α (Q1 + Q2 ) 1 + Q1 + Q2 1 + τ2 (i ω)α Q1 Q2 R1 , τ2 = Q2 R1 , τ1 = (i ω)α (Q1 + Q2 ) (1 + (i ω)α τ1 ) Q1 + Q2 τ2 ω 2α + 1 ω −α cos(πα)ω α + τ2 ω α + cos πα 2 Re Z(ω) = α 2α + 1 (Q + Q ) τ 2 cos πα 1 2 1 2 ω +ω πα ω −α sin πα ω α + τ2 ω 2α + 1 2 2 cos 2 Im Z(ω) = − α 2α + 1 (Q + Q ) τ 2 cos πα 1 2 1 2 ω +ω Z(ω) = Reduced impedance Z ∗ (u) = T −1 1 + T (i u)α Z(u) = 2 R1 T (i u)α (1 + (i u)α ) u = ω τ 1/α , T = τ2 /τ1 = 1 + Q2 /Q1 > 1 (T − 1)u−α (T + cos(απ))uα + T u2α + 1 cos απ 2 Re Z (u) = α 2α + 1 T 2 2 cos απ 2 u +u α 2α + 1 sin απ (T − 1)u−α 2 cos απ 2 u + T u 2 Im Z ∗ (u) = − uα + u2α + 1 T 2 2 cos απ 2 ∗ 3.2.2 α1 6= α2 1 + R1 (i ω)α2 Q2 Z(ω) = 1 1 α 1 + + R1 (i ω) Q1 (i ω)α1 Q1 (i ω)α2 Q2 (3.2) 22 CHAPTER 3. CIRCUITS MADE OF ONE R AND TWO CPES - Im Z * 2 1 0 0 1 Re Z * Figure 3.4: Nyquist diagram of the reduced impedance for the ((R1 +Q1 )/Q2 ) circuit (Fig. 3.3, Eq. (3.2)), plotted for T = 4, 9, 90 and α = 0.85. The line thickness increases with increasing T . Dots: reduced characteristic angular frequency uc1 = 1; circles: reduced characteristic angular frequency uc2 = 1/T 1/α (φuc1 = φuc2 ). α Z(ω) = (i ω)α1 1 + τ (i ω) 2 , τ = R1 Q2 Q1 + (i ω)α2 Q2 + τ (i ω)α1 +α2 Q1 Re Z(ω) = ω 2 α1 ω α1 cα1 1 + τ 2 ω 2 α2 + 2 τ ω α2 cα2 Q1 + ω α2 (τ ω α2 + cα2 ) Q2 / 1 + τ 2 ω 2 α2 + 2 τ ω α2 cα2 Q1 2 + 2 ω α1 +α2 (τ ω α2 cα1 + cα1mα2 ) Q1 Q2 + ω 2 α2 Q2 2 π (α1 − α2 ) cα1mα2 = cos 2 Im Z(ω) = ω 2 α1 −ω α1 1 + τ 2 ω 2 α2 + 2 τ ω α2 cα2 Q1 sα1 − ω α2 Q2 sα2 / 1 + τ 2 ω 2 α2 + 2 τ ω α2 α2 Q1 2 + 2 ω α1 +α2 (τ ω α2 cα1 + cα1mα2 ) Q1 Q2 + ω 2 α2 Q2 2 Chapter 4 Circuits made of two Rs and two CPEs 4.1 Circuit ((R1 /Q1 )+(R2 /Q2 )) Q1 Q2 R1 R2 Figure 4.1: Circuit ((R1 /Q1 )+(R2 /Q2 )). Z(ω) = 1 α1 (i ω) Z(ω) = 1 Q1 + R1 + 1 α2 (i ω) Q2 + 1 R2 R1 R2 + , τ1 = R1 Q1 , τ2 = R2 Q2 α1 α 1 + (i ω) τ1 1 + (i ω) 2 τ2 α Z(ω) = Re Z(ω) = α R1 + R2 + (i ω) 1 R2 τ1 + (i ω) 2 R1 τ2 α α (1 + (i ω) 1 τ1 ) (1 + (i ω) 2 τ2 ) R1 (1 + ω α1 cα1 τ1 ) R2 (1 + ω α2 cα2 τ2 ) + α α 1 + ω 1 τ1 (2 cα1 + ω 1 τ1 ) 1 + ω α2 τ2 (2 cα2 + ω α2 τ2 ) Im Z(ω) = − ω α1 R1 sα1 τ1 ω α2 R2 sα2 τ2 − 1 + ω α1 τ1 (2 cα1 + ω α1 τ1 ) 1 + ω α2 τ2 (2 cα2 + ω α2 τ2 ) 23 24 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES 0.3 - Im Z * uc1 0 uc2 0 0.5 1 Re Z * Figure 4.2: Nyquist diagrams of the reduced impedance for the ((R1 /Q1 )+(R2 /Q2 )) circuit (Fig. 4.1). R1 = R2 , α1 = α2 , Q2 ≫ Q1 . 0.5 0.5 uc1 = uc2 - Im Z * - Im Z * uc1 = uc2 0 0 0.5 Re Z 0 1 - Π4 Π4 0 0.5 * Re Z 1 * Figure 4.3: Unusual Nyquist diagrams of the reduced impedance for the ((R1 /Q1 )+(R2 /Q2 )) circuit (Fig. 4.1). R1 = R2 , Q2 = Q1 , α1 = 1. Left: α2 = 0.3, right: α2 = 0.5. 4.2 Circuit ((R1 +(R2 /Q2 ))/Q1 ) 1 Z(ω) = α1 (i ω) 1 Q1 + 1 R1 + α2 (i ω) Q2 + 1 R2 α Z(ω) = R1 + R2 + (i ω) 2 Q2 R1 R2 1 + (i ω)α1 Q1 (R1 + R2 ) + (i ω)α2 Q2 R2 + (i ω)α1 +α2 Q1 Q2 R1 R2 Q1 Q2 R1 R2 Figure 4.4: Circuit ((R1 +(R2 /Q2 ))/Q1 ). 4.3. CIRCUIT ((Q1 +(R2 /Q2 ))/R1 ) 25 Re Z(ω) = R1 + R2 + ω 2 α2 Q2 2 R1 (1 + ω α1 Cα1 Q1 R1 ) R2 2 + 2 ω α1 Cα1 Q1 (R1 + R2 ) + ω α2 Cα2 Q2 R2 (R2 + 2 R1 (1 + ω α1 Cα1 Q1 (R1 + R2 ))) / 1 + ω 2 α2 Q2 2 (1 + ω α1 Q1 R1 (2 Cα1 + ω α1 Q1 R1 )) R2 2 + ω α1 Q1 (R1 + R2 ) (2 Cα1 + ω α1 Q1 (R1 + R2 )) + 2 ω α2 Q2 R2 × (Cα2 + ω α1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ω α1 Q1 (R1 + R2 ))))) cα1mα2 = cos π (α1 − α2 ) 2 Im Z(ω) = ω α1 Q1 −ω 2 α2 Q2 2 R1 2 R2 2 − 2 ω α2 Cα2 Q2 R1 R2 (R1 + R2 ) − 2 (R1 + R2 ) Sα1 − ω α2 Q2 R2 2 Sα2 / 1 + ω 2 α2 Q2 2 (1 + ω α1 Q1 R1 (2 Cα1 + ω α1 Q1 R1 )) R2 2 + ω α1 Q1 (R1 + R2 ) (2 Cα1 + ω α1 Q1 (R1 + R2 )) + 2 ω α2 Q2 R2 × (Cα2 + ω α1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ω α1 Q1 (R1 + R2 ))))) 4.3 Circuit ((Q1 +(R2/Q2 ))/R1 ) R1 Q2 Q1 R2 Figure 4.5: Circuit ((Q1 +(R2 /Q2 ))/R1 ). Z(ω) = Z(ω) = 1 1 + R1 1 1 + α (i ω) 1 Q1 1 α2 (i ω) 1 R2 Q2 + R1 (1 + (i ω)α1 Q1 R2 + (i ω)α2 Q2 R2 ) α1 1 + (i ω) α2 Q1 (R1 + R2 ) + (i ω) α1 +α2 Q2 R2 + (i ω) Q1 Q2 R1 R2 26 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES Re Z(ω) = R1 1 + ω α2 Q2 R2 (2 Cα2 + ω α2 Q2 R2 ) + ω 2 α1 Q1 2 R2 × (R2 + R1 (1 + ω α2 Cα2 Q2 R2 )) + ω α1 Q1 (2 R2 (Cα1 + ω α2 Cα1mα2 Q2 R2 ) + Cα1 R1 (1 + ω α2 Q2 R2 (2 Cα2 + ω α2 Q2 R2 ))))) / 1 + ω 2 α2 Q2 2 (1 + ω α1 Q1 R1 (2 Cα1 + ω α1 Q1 R1 )) R2 2 + 2ω α2 ω α1 Q1 (R1 + R2 ) (2 Cα1 + ω α1 Q1 (R1 + R2 )) + Q2 R2 (Cα2 + ω α1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ω α1 Q1 (R1 + R2 ))))) Im Z(ω) = −ω α1 Q1 R2 2 (Sα1 + ω α2 Q2 R2 ((2 Cα2 + ω α2 Q2 R2 ) Sα1 + ω α1 Q1 R2 Sα2 )) / 1 + ω 2 α2 Q2 2 (1 + ω α1 Q1 R1 (2 Cα1 + ω α1 Q1 R1 )) R2 2 + ω α1 Q1 (R1 + R2 ) (2 Cα1 + ω α1 Q1 (R1 + R2 )) + 2 ω α2 Q2 R2 (Cα2 + ω α1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ω α1 Q1 (R1 + R2 ))))) Z(ω) = R1 (1 + τ1 (i ω)α1 + τ2 (i ω)α2 ) α1 1 + (1 + R1 /R2 ) τ1 (i ω) α2 + τ2 (i ω) α1 +α2 + τ1 τ2 (R1 /R2 ) (i ω) τ1 = Q1 R2 , τ2 = Q2 R2 4.4 Circuit (((Q2 +R2 )/R1 )/Q1 ) Q1 R1 Q2 R2 Figure 4.6: Circuit (((Q2 +R2 )/R1 )/Q1 ). Z(ω) = Z(ω) = 1 1 (i ω)α1 Q1 + + R1 1 1 + R2 α (i ω) 2 Q2 R1 (1 + (i ω)α2 Q2 R2 ) α1 1 + (i ω) α2 Q1 R1 + (i ω) α2 Q2 R1 + (i ω) α1 +α2 Q2 R2 + (i ω) Q1 Q2 R1 R2 4.4. CIRCUIT (((Q2 +R2 )/R1 )/Q1 ) 27 Re Z(ω) = (R1 (1 + ω α2 Q2 (ω α2 Q2 R2 (R1 + R2 ) + Cα2 (R1 + 2 R2 )) + ω α1 Cα1 Q1 R1 (1 + ω α2 Q2 R2 (2 Cα2 + ω α2 Q2 R2 )))) / (1 + ω α2 Q2 (R1 + R2 ) (2 Cα2 + ω α2 Q2 (R1 + R2 )) + ω 2 α1 Q1 2 R1 2 (1 + ω α2 Q2 R2 (2 Cα2 + ω α2 Q2 R2 )) + 2 ω α1 Q1 R1 × (Cα1 + ω α2 Q2 (Cα1mα2 R1 + 2 Cα1 Cα2 R2 + ω α2 Cα1 Q2 R2 (R1 + R2 )))) Im Z(ω) = R1 2 (− (ω α1 Q1 (1 + ω α2 Q2 R2 (2 Cα2 + ω α2 Q2 R2 )) Sα1 ) − ω α2 Q2 Sα2 ) / (1 + ω α2 Q2 (R1 + R2 ) (2 Cα2 + ω α2 Q2 (R1 + R2 )) + ω 2 α1 Q1 2 R1 2 (1 + ω α2 Q2 R2 (2 Cα2 + ω α2 Q2 R2 )) + 2 ω α1 Q1 R1 × (Cα1 + ω α2 Q2 (Cα1mα2 R1 + 2 Cα1 Cα2 R2 + ω α2 Cα1 Q2 R2 (R1 + R2 )))) α Z(ω) = α1 1 + (i ω) R1 (1 + (i ω) 2 τ2 ) τ1 + (1 + R1 /R2 ) (i ω)α2 τ2 + (i ω)α1 +α2 τ1 τ2 τ1 = Q1 R1 , τ2 = Q2 R2 28 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES Appendix A Symbols for CPE 29 30 APPENDIX A. SYMBOLS FOR CPE B A C CPE D F E G H Q J K M N P S ÙÙ Q I L O R T Figure A.1: Some CPE symbols, taken from A: [13], B: [19], C: [23], D: [5], E: [10], F: [17], G: [18], H: [21], I: [12], J: [15], K: [20], L: [2, 9], M: [11], N: [3, 4], O: [14], P: [24], Q, R [25], S [7], T [16]. Bibliography [1] Berthier, F., Diard, J.-P., and Montella, C. Distinguishability of equivalent circuits containing CPEs. I. Theoretical part. J. Electroanal. Chem. 510 (2001), 1–11. [2] Boillot, M. Validation expérimentale d’outil de modélisation d’une pile à combustible de type PEM. PhD thesis, INPL, Nancy, Oct. 2005. [3] Bommersbach, P., Alemany-Dumont, C., Millet, J., and Normand, B. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 51, 6 (2005), 1076 – 1084. [4] Bommersbach, P., Alemany-Dumont, C., Millet, J.-P., and Normand, B. Hydrodynamic effect on the behaviour of a corrosion inhibitor film: Characterization by electrochemical impedance spectroscopy. Electrochimica Acta 51, 19 (2006), 4011 – 4018. [5] Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., and Sluyters, J. H. The analysis of electrode impedance complicated by the presence of a constant phase element. J. Electroanal. Chem. 176 (1984), 275–295. [6] Chabli, A., Diaco, T., and Diard, J.-P. Détermination de la séquence de pondération d’une pile leclanché à l’aide d’une méthode d’intercorrélation. J. Applied Electrochem. 11 (1981), 661. [7] Ding, S.-J., Chang, B.-W., Wu, C.-C., Lai, M.-F., and Chang, H.C. Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on au electrodes. Analytica Chimica Acta 554 (2005), 43 – 51. [8] Fournier, J., Wrona, P. K., Lasia, A., Lacasse, R., Lalancette, J.-M., Menard, H., and Brossard, L. J. Electrochem. Soc. 139 (1992), 2372. [9] Franck-Lacaze, L., Bonnet, C., Besse, S., and Lapicque, F. Effect of ozone on the performance of a polymer electrolyte membrane fuel cell. Fuel Cells 09 (2009), 562–569. [10] Han, D. G., and Choi, G. M. Computer simulation of the electrical conductivity of composites: the effect of geometrical arrangement. Solid State Ionics 106 (1998), 71–87. 31 32 BIBLIOGRAPHY [11] Hernando, J., Lud, S. Q., Bruno, P., Gruen, D. M., Stutzmann, M., and Garrido, J. A. Electrochemical impedance spectroscopy of oxidized and hydrogen-terminated nitrogen-induced conductive ultrananocristalline diamond. Electrochim. Acta 54 (2009), 1909–1915. [12] Holzapfel, M., Martinent, A., Alloin, F., B. Le Gorrec, Yazami, R., and Montella, C. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J. Electroanal. Chem. 546 (2003), 41–50. [13] Jansen, R., and Beck, F. Electrochim. Acta 39 (1994), 921. [14] Jonscher, A. K., and Bari, M. A. Admittance spectroscopy of sealed primary batteries. J. Electrochem. Soc. 135 (1988), 1618–1625. [15] Kulova, T. L., Skundin, A. M., Pleskov, Y. V., Terukov, E. I., and Kon’kov, O. I. Lithium insertion into amorphous silicon thin-film electrode. J. Electroanal. Chem. 600 (2007), 217–225. [16] Laes, K., Bereznev, S., Land, R., Tverjanovich, A., Volobujeva, O., Traksmaa, R., Raadik, T., and Öpik, A. The impedance spectroscopy of photoabsorber films prepared by high vacuum evaporation technique. Energy Procedia 2, 1 (2010), 119 – 131. [17] Matthew-Esteban, J., and Orazem, M. E. On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. J. Electrochem. Soc. 138 (1991), 67–76. [18] Messaoudi, B., Joiret, S., Keddam, M., and Takenouti, H. Anodic behaviour of manganese in alkaline medium. Electrochim. Acta 46 (2001), 2487–2498. [19] Orazem, M. E., Shukla, P. S., and Membrino, M. A. Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochim. Acta 47 (2002), 2027–2034. [20] Quintin, M., Devos, O., Delville, M. H., and Campet, G. Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2 O3 electrodes by means of electrochemical impedance spectroscopy. Electrochim. Acta 51 (2006), 6426–6434. [21] Seki, S., Kobayashi, Y., Miyashiro, H., Yamanaka, A., Mita, Y., and Iwahori, T. Degradation mechanism analysis of all solid-state lithium polymer rechargeable batteries. In IMBL 12 Meeting (2004), The Electrochemical Society. Abs. 386. [22] Sluyters-Rehbach, M. Impedance of electrochemical systems: terminology, nomenclature and representation-part I: cells with metal electrodes and liquid solution (IUPAC Recommendations 1994). Pure & Appl. Chem. 66 (1994), 1831–1891. [23] Tomczyk, P., and Mosialek, M. Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy. Electrochim. Acta 46 (2001), 3023–3032. BIBLIOGRAPHY 33 [24] VanderNoot, T. J., and Abrahams, I. The use of genetic algorithms in the non-linear regression of immittance data. J. Electroanal. Chem. 448 (1998), 17–23. [25] Yang, B. Y., and Kim, K. Y. The oxidation behavior of Ni-50%Co alloy electrode in molten Li + K carbonate eutectic. Electrochim. Acta 44 (1999), 2227–2234. [26] Zoltowski, P. J. Electroanal. Chem. 443 (1998), 149.
© Copyright 2026 Paperzz