Math 220 September 13 I. Determine the values of a for which limx→a f (x) exists. 1 + sin(x) if x < 0 f (x) = cos(x) if 0 ≤ x ≤ π sin(x) if x > π II. Determine the infinite limit. 1. lim− x+3 x−4 lim+ x+3 x−4 x→4 2. x→4 3. 3−x x→4 (x − 4)2 lim 4. limx→4+ ln(x2 − 16) 5. limx→π+ cot(x) 6. lim− x→2 x2 + 5x + 6 x2 − 3x + 2 1 7. x2 − 4 lim x→2+ x2 + 2x − 8 III. Evaluate the limit, if it exists 1. x2 − 4x x→−1 x2 − 3x − 4 lim 2. √ √ 2+x− 2−x lim x→0 x 3. √ 3− x lim x→9 9x − x2 4. (x + h)3 − x3 h→0 h lim 5. (x + h)−2 − x−2 h→0 h lim 2 1 Solutions I. Determine the values of a for which limx→a f (x) exists. 1 + sin(x) if x < 0 f (x) = cos(x) if 0 ≤ x ≤ π sin(x) if x > π Answer: By inspection, we can see that limit exists for a < 0, 0 < a < π and a > π lim 1 + sin(x) = 1 + sin(0) = 1 + 1 = 2 x→0− lim cos(x) = cos(0) = 1 x→0+ lim f (x) = lim+ f (x) x→0− x→0 So we have the limit exists at a = 0. lim cos(x) = cos(π) = −1 x→π − lim sin(x) = sin(π) = 0 x→π + lim f (x) 6= lim+ f (x) x→π − x→π So the limit doesn’t exist at a = π. The limit exists for a < π and a > π. II. Determine the infinite limit. 3 1. lim− x→4 x+3 x−4 Answer: x+3 lim− x→4 x − 4 2. lim+ x→4 7 0− = −∞ x+3 x−4 Answer: x+3 lim+ x→4 x − 4 3. 7 0+ =∞ 3−x x→4 (x − 4)2 lim Answer: x+3 lim− x→4 (x − 4)2 x+3 lim+ x→4 (x − 4)2 7 0+ 7 0+ =∞ =∞ x+3 =∞ x→4 (x − 4)2 lim 4 4. lim+ ln(x2 − 16) x→4 Answer: lim+ ln(x2 − 16) ln(0+ ) = −∞ x→4 5. lim cot(x) x→π + Answer: cos(x) lim+ cot(x) = lim+ x→π x→π sin(x) 6. lim− x→2 −1 0− =∞ x2 + 5x + 6 x2 − 3x + 2 Answer: (x + 3)(x + 2) x2 + 5x + 6 = lim− lim− 2 x→2 (x − 2)(x − 1) x→2 x − 3x + 2 7. lim+ x→2 20 0− = −∞ x2 − 4 x2 + 2x − 8 Answer: lim+ x→2 x2 − 4 (x + 2)(x − 2) (x + 2) 4 2 = lim+ = lim+ = = 2 x + 2x − 8 x→2 (x − 2)(x + 4) x→2 (x + 4) 6 3 5 III. Evaluate the limit, if it exists 1. x2 − 4x x→−1 x2 − 3x − 4 lim Answer: x2 − 4x x(x − 4) x 1 = lim = lim = 2 x→−1 x − 3x − 4 x→−1 (x − 4)(x + 1) x→−1 (x + 1) 2 lim 2. √ √ 2+x− 2−x lim x→0 x Answer: √ lim x→0 3. 2+x− x √ 2−x √ √ √ √ 2+x− 2−x 2+x+ 2−x √ √ = lim x→0 x 2+x+ 2−x (2 + x) − (2 − x) √ = lim √ x→0 x( 2 + x + 2 − x) 2x √ = lim √ x→0 x( 2 + x + 2 − x) 2 √ = lim √ x→0 ( 2 + x + 2 − x) 2 = √ √ ( 4 + 2 − 2) 2 = 2 =1 √ 3− x lim x→9 9x − x2 6 Answer: √ √ √ 3− x 3− x 3+ x √ lim = lim x→9 9x − x2 x→9 9x − x2 3+ x 9−x √ = lim x→9 (9x − x2 )(3 + x) 9−x √ = lim x→9 x(9 − x)(3 + x) 1 √ = lim x→9 x(3 + x) 1 √ = 9(3 + 9) 1 = 9(6) 1 = 54 4. (x + h)3 − x3 h→0 h lim Answer: (x + h)3 − x3 (x3 + 3x2 h + 3xh2 + h3 ) − x3 = lim h→0 h→0 h h 3x2 h + 3xh2 + h3 = lim h→0 h 2 = lim 3x + 3xh + h2 lim h→0 2 = 3x 5. (x + h)−2 − x−2 h→0 h lim 7 Answer: (x + h)−2 − x−2 lim = lim h→0 h→0 h 1 1 1 − (x + h)2 x2 h x2 1 (x + h)2 = lim − 2 2 2 2 h→0 x (x + h) x (x + h) h 2 2 x − (x + h) 1 = lim 2 2 h→0 x (x + h) h 2 2 x − (x + 2xh + h2 ) 1 = lim h→0 x2 (x + h)2 h 2 1 −2xh − h = lim 2 2 h→0 x (x + h) h (−2x − h)h 1 = lim h→0 x2 (x + h)2 h (−2x − h) = lim h→0 x2 (x + h)2 −2x = 2 2 xx −2x = 4 x −2 = 3 x 8
© Copyright 2026 Paperzz