2-6 Proving Statements about Segments Given: AC = BD Prove: AB = CD. A B C D Given: AB = CD Prove: AC = BD. A B C D theorem: proven statement Linear Pair Theorem: If two angles form a linear pair, then they are supplementary. Proof. Given: Prove: D A 1 and 2 form a linear pair 1 supp 2 Statements 1. 1 and 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. 6. 7. 1 supp B Reasons 2 form a linear pair 2 7. 2 1 given C A B D C Congruent Complements Theorem: If two angles are complementary to the same angle (or to two congruent angles) then the two angles are congruent. Congruent Supplements Theorem: If two angles are supplementary to the same angle (or to two congruent angles) then the two angles are congruent. (Proof): Congruent Complements Theorem If 2 angles are complementary to the same angle, then they are congruent to each other. Given: Prove: Statements Reasons (Proof): Congruent Supplements Theorem If 2 angles are supplementary to the same angle, then they are congruent to each other. Given: Prove: Statements Reasons 1. Given: m 1 = 24, m 3 = 24 1 comp. 2 3 comp. 4 Prove: 2 = Statement 4 Reason 1. __________________ 1. given 2. __________________ 2. given 3. __________________ 3. ____________________ 4. 1 = 3 4. ____________________ 5. __________________ 5. given 6. __________________ 6. given 7. __________________ 7. _____________________ B Right Angle Congruence Theorem: All right angles are congruent. A Given: A and B are right angles Prove: A = B Statement 1. A and Reason B are right angles 1. 2. m A = 90 ; m B = 90 2. 3. m A = m B 3. 4. 4. Definition of = angles 3. Given: ABC = Prove: DAB and BCD DAB = ABC are rt. angles D BCD A Statement Reason 1. _____________________ 1. _____________________ 2. _____________________ 2. _____________________ 3. _____________________ 3. _____________________ 4. ABC = BCD C 4. _____________________ 5. _____________________ 5. _____________________ B B 4. Given: 1 = 2, 2= 3 Prove: 3= 4 1= 4 A Statement C Reason 1. ______________________ 1. given 2. ______________________ 2. given 3. ______________________ 3. ______________________ 4. 3 = 4 4. given 5. ______________________ 5. _______________________ 5. Given: m 1 = 63, 1 = 3 3 = 4 Prove: m 4 = 63 Statement Reason 1. ___________________ 1. given 2. ___________________ 2. given 3. ___________________ 3. ____________________ 4. ___________________ 4. defn. = angles 5. m 1 = 63 5. given 6. ___________________ 6. ________________________ K 6. Given: LK = 5, JK = 5, JK = JL Prove: LK = JL J L Statement Reason 1. 1. given 2. 2. given 3. LK = JK 3. 4. LK = JK 4. 5. JK = JL 5. 6. 6. 7. Given: X is the midpoint of MN MX = RX S M X Prove: XN = RX R Statement Reason 1. 1. 2. 2. Definition of midpoint 3. MX = XN 3. 4. 4. given 5. XN = RX 5. N 8. Given: RS = XY ST = WX S R Prove: RT = WY W Statement Reason X 1. 1. given 2. 2. given 3. 3. Segment Addition Postulate 4. XY + WX = RT 4. 5. WX + XY = WY 5. 6. RT = WY 6. T Y 9. Given: AB = BC, BC = CD Find BC. D A 3x-1 B 2x+3 C 10. S R Given: RT = WY, ST = WX Prove: RS = XY W X Statement 1. ____________________ Reason 1. given 2. RT = WY 2. ____________________ 3. ____________________ 3. Segment Addition Postulate 4. ____________________ 4. Segment Addition Postulate 5. ____________________ 5. _____________________ 6. ST = WX 6. given 7. RS = XY 7. 8. RS = XY 8. ______________________ T Y 11. Given: AD = 8, BC = 8, BC = CD B Prove: AD = CD C A Statement Reason 1. ________________ 1. given 2. BC = 8 2. _______________ 3. ________________ 3. transitive 4. ________________ 4. Definition of = segments 5. BC = CD 6. AD = CD 5. ____________________ 6. _____________________ D
© Copyright 2025 Paperzz