The Multisection Of Any Arbitrary Angle With Straightedge And

IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 2 Ver. III (Mar. - Apr. 2017), PP 09-18
www.iosrjournals.org
The Multisection Of Any Arbitrary Angle With Straightedge And
Compass Only
Hemendra Kumar Srivastava
M.Sc. Maths (in 1973), H. No. N 8/256-D 3 K, Jeewan Nagar Colony, Newada, Sunderpur, Varanasi-221005,
U.P. (India).
Preface
At school level students learn about bisection of any arbitrary angle or repeated bisections if required with the
help of straightedge and compass only. They do not come across about angle trisection or other higher
multisections with the help of only these tools.In 1837 P. Wantzel a French mathematician proved the
impossibility of trisection of any arbitrary angle with only stranghtedge and compass except some specified
angles.In my present work I have endeavoured to demostrate methods for drawing very approximate
multisections of any arbitrary angles lying between 0 to 90 0 with the help of only stranghtedge and compass.
I came to know about impossibility of angle trisection at my B.Sc. standard in 1970 through a mathematical
journal and since then I was working on it. Thus my present work is the result of many years of dedicated
efforts.
I. Multisection of an arbitrary angle with the help of straightedge and compass only
1.
Before proceeding further we shall first derive the formula or results (4) & (5) worked out in the following
pages.
Given AX & AY are X & Y axis.
AP a line making an angle πœƒ with X axis such that (00 < πœƒ ≀ 900 )
C any point on the line AP,a semi-circle ABFE is drawn taking C as centre and AC as radiusr.
The semi circle cuts X axis on pt. B. AE is diameter.
BD a length is cut equal to mr (m times of radius r). points C & D are joined.
To find the locus of point F where the line CD cuts the semicircle at F.
Point C is (r cosπœƒ, r sinπœƒ)
Point E is (2r cosπœƒ, 2r sinπœƒ)
So length A B is = 2r cosπœƒ& BD = mr
Hence coordinates of pt. D is (2r cosπœƒ+mr, o)
So equation of line CD is
𝑦 βˆ’π‘¦
y-y1 = 2 1 (x-x1)
π‘₯ 2 βˆ’π‘₯ 1
Or y – r sinπœƒ=
0βˆ’π‘Ÿ π‘ π‘–π‘›πœƒ
2π‘Ÿπ‘π‘œπ‘ πœƒ +π‘šπ‘Ÿ βˆ’π‘Ÿπ‘π‘œπ‘ πœƒ
βˆ’π‘Ÿ π‘ π‘–π‘›πœƒ
(x – r cosπœƒ)
Or y – r sinπœƒ =
(π‘₯ βˆ’ π‘Ÿπ‘π‘œπ‘ πœƒ)
π‘Ÿ π‘π‘œπ‘ πœƒ +π‘šπ‘Ÿ
Or (y-r sinπœƒ) (r cosπœƒ + π‘šπ‘Ÿ) = r2sincosπœƒ βˆ’xrSinπœƒ
Or (y- r sinπœƒ) × π‘Ÿ π‘π‘œπ‘ πœƒ + π‘š = π‘Ÿ (π‘Ÿπ‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘₯π‘ π‘–π‘›πœƒ)
Or 𝑦 βˆ’ π‘Ÿπ‘ π‘–π‘›πœƒ π‘π‘œπ‘ πœƒ + π‘š = π‘Ÿπ‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘₯ π‘ π‘–π‘›πœƒ
Or 𝑦 π‘π‘œπ‘ πœƒ + π‘šπ‘¦ βˆ’ π‘Ÿ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ = π‘Ÿ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘₯ π‘ π‘–π‘›πœƒ + π‘šπ‘Ÿπ‘ π‘–π‘›πœƒ
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
9 | Page
The multisection of any arbitrary angle with straightedge and compass only
Or 𝑦 π‘π‘œπ‘ πœƒ + π‘šπ‘¦ + π‘₯π‘ π‘–π‘›πœƒ = 2π‘Ÿ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + π‘šπ‘Ÿ π‘ π‘–π‘›πœƒ------------------- (1)
Now equation of the circle is
(x-x1)2 + (y-y1)2 = r2
= (π‘₯ βˆ’ π‘Ÿπ‘π‘œπ‘ πœƒ)2+ (𝑦 βˆ’ π‘Ÿπ‘ π‘–π‘›πœƒ)2= r2-------------------------- (2)
= x2+r2cos2πœƒ-2xrcosπœƒ+y2+r2sin2πœƒ-2yr sinπœƒ= r2
Or x2+y2+r2 (cos2πœƒ+sin2πœƒ)- 2r (x cosπœƒ+ y sinπœƒ) = r2
Or x2+y2+r2 – 2r (x cosπœƒ+y sinπœƒ)= r2
Or x2+y2 = 2r (x cosπœƒ+y sinπœƒ)------------------------------- (3)
𝑦 π‘π‘œπ‘ πœƒ +π‘₯ π‘ π‘–π‘›πœƒ +π‘šπ‘¦
Now from (1) r =
2π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ +π‘šπ‘ π‘–π‘›πœƒ
Putting this value of r in eq. (3) we have
2 𝑦 π‘π‘œπ‘ πœƒ +π‘₯ π‘ π‘–π‘›πœƒ +π‘šπ‘¦ (π‘₯π‘π‘œπ‘ πœƒ +π‘¦π‘ π‘–π‘›πœƒ )
x2+y2 =
2π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ +π‘šπ‘ π‘–π‘›πœƒ
or (x2+y2) (2sinπœƒπ‘π‘œπ‘ πœƒ + π‘šπ‘ π‘–π‘›πœƒ)
= 2(π‘¦π‘π‘œπ‘ πœƒ + π‘₯π‘ π‘–π‘›πœƒ + π‘šπ‘¦) (x cosπœƒ + 𝑦 π‘ π‘–π‘›πœƒ)
L.H.S. =
2π‘₯ 2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + π‘₯ 2 π‘šπ‘ π‘–π‘›πœƒ + 2𝑦 2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ
R.H.S. =
2𝑦π‘₯π‘π‘œπ‘  2 πœƒ + 2𝑦 2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + 2π‘₯ 2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + 2π‘₯𝑦𝑠𝑖𝑛2 πœƒ +
2π‘₯π‘¦π‘šπ‘π‘œπ‘ πœƒ + 2π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ
=
2π‘₯𝑦 π‘π‘œπ‘  2 πœƒ + 𝑠𝑖𝑛2 πœƒ + 2𝑦 2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + 2π‘₯ 2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ +
2π‘₯π‘¦π‘šπ‘π‘œπ‘ πœƒ + 2π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ
Simplifying LHS & RHS we get:π‘šπ‘₯ 2 π‘ π‘–π‘›πœƒ + π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ = 2π‘₯𝑦 + 2π‘₯π‘¦π‘šπ‘π‘œπ‘ πœƒ + 2π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ
OR π‘šπ‘₯ 2 π‘ π‘–π‘›πœƒ = 2π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ βˆ’ π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ + 2π‘₯π‘¦π‘šπ‘π‘œπ‘ πœƒ + 2π‘₯𝑦
OR π‘šπ‘¦ 2 π‘ π‘–π‘›πœƒ + 2π‘₯𝑦 1 + π‘šπ‘π‘œπ‘ πœƒ βˆ’ π‘šπ‘₯ 2 π‘ π‘–π‘›πœƒ = 0
βˆ’2π‘₯(1+π‘šπ‘π‘œπ‘ πœƒ )± 4π‘₯ 2 (1+π‘šπ‘π‘œπ‘  )2 +4π‘š 2 π‘₯ 2 𝑠𝑖𝑛 2 πœƒ
OR 𝑦 =
By solving for yOR 𝑦 =
2π‘šπ‘ π‘–π‘›πœƒ
βˆ’2π‘₯(1+π‘šπ‘π‘œπ‘ πœƒ )± 4π‘₯ 2 (1+π‘š 2 π‘π‘œπ‘  2 πœƒ+2π‘šπ‘π‘œπ‘ πœƒ +4π‘š 2 π‘₯ 2 𝑠𝑖𝑛 2 πœƒ
2π‘šπ‘ π‘–π‘›πœƒ
βˆ’2π‘₯(1 + π‘šπ‘π‘œπ‘ πœƒ) ± 4π‘₯ 2 {1 + (π‘š2 π‘π‘œπ‘  2 πœƒ + π‘š2 𝑠𝑖𝑛2 πœƒ) + 2π‘šπ‘π‘œπ‘ πœƒ}
=
2π‘šπ‘ π‘–π‘›πœƒ
OR 𝑦 =
βˆ’2π‘₯(1+π‘šπ‘π‘œπ‘ πœƒ )± 4π‘₯ 2 (1+π‘š 2 +2π‘šπ‘π‘œπ‘ πœƒ )
2π‘šπ‘ π‘–π‘›πœƒ
=
βˆ’2π‘₯(1 + π‘šπ‘π‘œπ‘ πœƒ) ± 2π‘₯ 1 + π‘š2 + 2π‘šπ‘π‘œπ‘ πœƒ
2π‘šπ‘ π‘–π‘›πœƒ
π‘₯ 1+π‘š 2 +2π‘šπ‘π‘œπ‘ πœƒ βˆ’π‘₯(1+π‘šπ‘π‘œπ‘ πœƒ )
OR 𝑦 =
π‘šπ‘ π‘–π‘›πœƒ
Only taking (+) sign. (since00<πœƒ ≀ 900 )
=π‘₯
1 + π‘š2 + 2π‘šπ‘π‘œπ‘ πœƒ βˆ’ (1 + π‘šπ‘π‘œπ‘ πœƒ)
π‘šπ‘ π‘–π‘›πœƒ
Hence Locus of the point F, the point of intersection of line CD & circle ABFE is a straight line passing
through origin A(0,0) and making an angle 𝝍 with X axis.
such that,
𝟏+π’ŽπŸ +πŸπ’Žπ’„π’π’”πœ½βˆ’(𝟏+π’Žπ’„π’π’”πœ½)
tan𝝍 =
……………………………………….(4)
π’Žπ’”π’Šπ’πœ½
which is independent of r and a function of πœƒ& m only.
This is an important result and the basis of angle multisections.
Note that the length BD is = m × r
that is m times or radius r
π‘š
if BD is times of r then (4) becomes
𝑛
π’ŽπŸ +π’πŸ +πŸπ’Žπ’π’„π’π’”πœ½βˆ’(𝒏+π’Žπ’„π’π’”πœ½)
tan𝝍 =
π’Žπ’”π’Šπ’πœ½
1.1 Corollary-1
if BD = mr and m=1
then BD = r so from (4)
tanπœ“ =
or =
……………………………...…………….(5)
12 +12 +2.1π‘π‘œπ‘ πœƒ βˆ’(1+π‘π‘œπ‘ πœƒ )
π‘ π‘–π‘›πœƒ
2+2π‘π‘œπ‘ πœƒ βˆ’(1+π‘π‘œπ‘ πœƒ )
π‘ π‘–π‘›πœƒ
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
10 | Page
The multisection of any arbitrary angle with straightedge and compass only
2(1+π‘π‘œπ‘ πœƒ )βˆ’(1+π‘π‘œπ‘ πœƒ )
=
π‘ π‘–π‘›πœƒ
πœƒ
πœƒ
2
2
πœƒ
πœƒ
2𝑠𝑖𝑛 π‘π‘œπ‘ 
2
2
πœƒ
πœƒ
2
2π‘π‘œπ‘  βˆ’2π‘π‘œπ‘ 
2
2
πœƒ
πœƒ
2𝑠𝑖𝑛 π‘π‘œπ‘ 
2
2
πœƒ
πœƒ
2π‘π‘œπ‘  1βˆ’π‘π‘œπ‘ 
2
2
πœƒ
πœƒ
2𝑠𝑖𝑛 π‘π‘œπ‘ 
2
2
πœƒ
πœƒ
1βˆ’π‘π‘œπ‘ 
2𝑠𝑖𝑛 2
2
4
πœƒ
πœƒ
πœƒ
𝑠𝑖𝑛
2𝑠𝑖𝑛 π‘π‘œπ‘ 
2
4
4
πœƒ
𝑠𝑖𝑛 4
πœƒ
πœƒ
4
π‘π‘œπ‘ 
4
2.2π‘π‘œπ‘  2 βˆ’2π‘π‘œπ‘  2
=
=
=
=
=
=
= π‘‘π‘Žπ‘›
So π‘‘π‘Žπ‘›πœ“ = π‘‘π‘Žπ‘›
πœƒ
πœƒ
4
Or πœ“ =
4
Hence if length BD = r (radius) then
1
πœƒ
βˆ π‘„π΄π· = βˆ π‘ƒπ΄π· =
………………………………………………………(6)
4
4
This is another important result as it gives us a method for constructing
bisecting it with the help of straightedge and compass only.
In Fig.2
∠𝐸𝐴𝐷 = πœƒ, π‘š = 1
1 𝑑𝑕
4
of any original angle without
𝐹𝑖𝑔. 2
π‘š = 1
πœƒ
πœƒ/4
𝐡𝐷 = 𝐴𝐢 = π‘Ÿ
1
By corollary 1 ∠𝐹𝐴𝐷 = πœƒ
4
1.2 Corollary-2
If D proceeds further & BD becomes larger ∠𝐹𝐴𝐷increases gradually and finally when BD is infinite line CD
becomes parallel to AD or X axis then equation of line CD becomes.
𝑦 = π‘Ÿπ‘ π‘–π‘›πœƒ
and eq. of circle is (π‘₯ βˆ’ π‘Ÿπ‘π‘œπ‘ πœƒ)2 + 𝑦 βˆ’ π‘Ÿπ‘ π‘–π‘›πœƒ 2 = π‘Ÿ 2
or(π‘₯ βˆ’ π‘Ÿπ‘π‘œπ‘ πœƒ)2 βˆ’ 02 = π‘Ÿ 2
or
π‘₯βˆ’
2
π‘¦π‘π‘œπ‘ πœƒ
π‘ π‘–π‘›πœƒ
π‘¦π‘π‘œπ‘ πœƒ
=
𝑦
2
𝑦
π‘ π‘–π‘›πœƒ
or
or
or
or
π‘₯βˆ’
=
π‘ π‘–π‘›πœƒ
π‘ π‘–π‘›πœƒ
π‘₯ π‘ π‘–π‘›πœƒ βˆ’ π‘¦π‘π‘œπ‘ πœƒ = 𝑦
π‘₯ π‘ π‘–π‘›πœƒ = 𝑦(1 + π‘π‘œπ‘ πœƒ)
πœƒ
πœƒ
πœƒ
y × 2π‘π‘œπ‘  2 = π‘₯ × 2𝑠𝑖𝑛 π‘π‘œπ‘ 
or
y × π‘π‘œπ‘  = π‘₯ × π‘ π‘–π‘›
or
𝑦 = π‘₯. π‘‘π‘Žπ‘›
or
tanπœ“ = π‘‘π‘Žπ‘›
πœƒ
2
2
πœƒ
πœƒ
2
2
2
2
πœƒ
2
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
11 | Page
The multisection of any arbitrary angle with straightedge and compass only
πœƒ
or
πœ“=
…………………………………………………………….(7)
2
So in this case the line AF bisects the angle E A B or πœƒ.
So this corollary gives us another method of bisecting any given angle.
𝐹𝑖𝑔. 3
π‘š= ∞
πœƒ
πœƒ/2
Line CD is parallel to AX
1
πœƒ
∠𝐹𝐴𝐡 = βˆ πΈπ΄π‘‹ =
2
2
When the length BD = 0, pt. F concides with pt. B and ∠𝐹𝐴𝐡 = 0 and as per corollary 2 when BD is infinite
1
∠𝐹𝐴𝐡 = ∠𝐸𝐴𝐡
2
So by taking different values of m we can multisect the given angle πœƒ with the help of straight edge and compass
only.
II. Some results of taking different values of m and 𝜽 and 𝝍
A for trisection of an angle
πœƒ
m or
0
π‘š
πœ“
𝑛
90
600
300 exactly
19.9830 approximately
3
15
1
π‘œπ‘Ÿ 2 βˆ’
8
8
30
20
10
6
10.050 approx.
6.6820 approx.
3.3350 approx.
2.000430 approx.
2
2
2
2
From above if will be seen, whenπœƒ β†’ 00 , "2"is the limiting value of β€˜m’ for trisection of any angle.
So the values from πœƒ = 00 to 900 , m ranges between 2 to 3
π‘š
For β€˜m’ formula (4) and for formula (5) can be taken to obtain the value of tan πœ“ or πœ“
𝑛
B. other resultsπœƒ
m or
π‘š
Voluntary
1.2 or
90
.84 or
60
4.5or
60
Pentasection
3
90
90
30
πœ“
𝑛
900
6
300 exactaly
250 approximately
5
21
200 approx.
25
9
250 approx.
2
3βˆ’1
9
13
2
3
18.10 approx.
12.003 approx.
5.970
3. Special Case:when πœƒ = 900 , π‘π‘œπ‘ πœƒ = 0, π‘ π‘–π‘›πœƒ = 1 𝑑𝑕𝑒𝑛 π‘“π‘œπ‘Ÿπ‘šπ‘’π‘™π‘Ž 4 π‘π‘’π‘π‘œπ‘šπ‘’π‘ 
𝟏+π’ŽπŸ βˆ’πŸ
𝒕𝒂𝒏𝝍 =
π’Ž
…………………………………………………………..(8)
putπ‘š = 3 then
1+3βˆ’1
π‘‘π‘Žπ‘›πœ“ =
3
2βˆ’1
1
=
= = tan300
3
3
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
12 | Page
The multisection of any arbitrary angle with straightedge and compass only
orπœ“ = 300 =
1
π‘œπ‘“ 900 𝑀𝑕𝑖𝑐𝑕 𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ π‘Žπ‘  π‘π‘’π‘Ÿ π‘Ÿπ‘’π‘ π‘’π‘™π‘‘π‘  π‘œπ‘“ 𝐴 & 𝐡.
3
1+π‘š 2 βˆ’1
Letπ‘‘π‘Žπ‘›πœ“ =
π‘š
=k
π‘š2
So 1 +
βˆ’ 1 = π‘šπ‘˜
or 1 + π‘š2 βˆ’ 1 = π‘šπ‘˜
or1 + π‘š2 = 1 + π‘š2 π‘˜ 2 + 2π‘šπ‘˜
orπ‘š2 βˆ’ π‘š2 π‘˜ 2 = 2π‘šπ‘˜
orπ‘š2 1 βˆ’ π‘˜ 2 = 2π‘šπ‘˜
πŸπ’Œ
orπ’Ž =
= π’•π’‚π’πŸπ ………………………………………………………(9)
πŸβˆ’π’ŒπŸ
So for given k, m can be evaluated exact or approx.for πœƒ = 900 and also for any angle πœƒ applying the results (4)
or (5). Nearest fractional values can be obtained by applying continued fractions methods.
For Example if πœƒ = 900 then for trisection
πœ“ = 300 So by result (9)
m = tan2πœ“ = tan 2.300
= tan600 = 3 as in result A
For πœ“ = 150 m = tan2.150
1
= tan30 =
3
For πœ“ = 200, m = tan400
21
= .84 = approximately as in result B
25
For πœ“ = 250 m = tan500
6
= 1.19 = approximately As in result B
5
4. How to draw lines equal to
BD = mr with the help of unmarked straight edge and compass only.
We know that by simple school level geometry methods any line can be divided into any number of equal parts.
This method can be used here.
i)
When m is an integer like 2, 3, 4, 5……… simply BD = m times of radius and can be drawn by
compass only.
ii)
𝑝
π‘π‘Ÿ
π‘ž
π‘ž
When m = a fractional form then BD =
=p×
π‘Ÿ
π‘ž
in this cuse r can be divided into q equal parts
and p part of it will be take to draw BD. All this exercise can be done with the help of straight edge and
compass only.
e.g.
15π‘Ÿ
8
= 1+
7
8
π‘Ÿ=
2βˆ’
7
1
8
8
BD = π‘Ÿ + π‘Ÿ π‘œπ‘Ÿ 2π‘Ÿ βˆ’
1
8
π‘Ÿ
𝐢
π‘Ÿ can be draw in parts.
iii)
When m = 𝑝 likes 2, 3, 5 etc.
Then BD = 𝑝 r like 2 r, 3 r……….
in right angled triangle Fig.4
ABC if AB = BC = r
then AC = 2 r
2
Fig.4
𝐢
in fig. 5 rt angled triangle if AC = 2 r
CB = r then
AB = 3 r
3
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
Fig.5
13 | Page
The multisection of any arbitrary angle with straightedge and compass only
In fig.6
BC = r AB = 2r
Then AC = 5 r
𝐢
In fig.7
If AB = 5 r
BC = r
Then AC = 6 r
6
𝑝 r can be drawn.
Similarly any line equal to
iv)
If m =
𝑏
The BD =
π‘ž
5
𝑏
π‘ž
π‘π‘ž
r=
π‘ž
Fig.7
r
Then π‘π‘ž r can be drawn as in (iii) and then divided into q equal parts.
e.q.
3
2
6
r=
2
r
in fig. (7) AC = 6 r
so BD =
6
2
r=
𝐴𝐢
2
v)
If m is like 3 – 1………
BD = ( 3 βˆ’ 1) r
= 3 r – r which can be draw n easily so BD can be drawn with the help of straights edge and compass only for
all above type of values of m.
5. To find the limiting values of m when 𝜽 is small and tends to zero
As in result (4) we have
tan πœ“ =
1+π‘š 2 +2π‘š π‘π‘œπ‘ πœƒ βˆ’ (1+π‘š π‘π‘œπ‘ πœƒ )
π‘š π‘ π‘–π‘›πœƒ
1/2
πœƒ2 πœƒ4
=
1+π‘š 2 +2π‘š 1βˆ’ !2 + !4 ……….
πœƒ2 πœƒ4
βˆ’ 1+π‘š 1βˆ’ !2 + !4 ……….
πœƒ3 πœƒ5
+ …………..
!3 !5
π‘š πœƒβˆ’
Since πœƒis small we can discard πœƒ 3 and other higher powers of πœƒ
Then,
1+π‘š 2 +2π‘š βˆ’π‘š πœƒ 2
Tanπœ“ =
π‘šπœƒ
(1+π‘š )2 βˆ’ π‘š πœƒ 2
=
=
=
1/2
1/2
π‘šπœƒ
π‘šπœƒ
1 π‘š πœƒ2
(1+π‘š )2
π‘šπœƒ 2
βˆ’ 1+π‘š βˆ’ 2
π‘šπœƒ 2
(1+π‘š )2 1βˆ’
(1+π‘š )2
(1+π‘š ) 1βˆ’2
π‘šπœƒ 2
βˆ’ 1+π‘š βˆ’ 2
1/2
π‘š πœƒ2
βˆ’ 1+π‘š βˆ’ 2
π‘š πœƒ2
βˆ’ 1+π‘š βˆ’ 2
π‘šπœƒ
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
14 | Page
The multisection of any arbitrary angle with straightedge and compass only
π‘š πœƒ2
=
=
=
=
π‘š πœƒ2
1+π‘š βˆ’2(1+π‘š ) βˆ’ 1+π‘š βˆ’ 2
π‘šπœƒ
π‘š πœƒ2
π‘š πœƒ2
βˆ’
2
2 1+π‘š
1+π‘š βˆ’1βˆ’π‘š +
π‘šπœƒ
π‘š πœƒ2
π‘š πœƒ2
βˆ’
2
2(1+π‘š )
π‘šπœƒ
π‘š πœƒ2
1
1βˆ’
2
1+π‘š
π‘šπœƒ
π‘š
πœƒ
= ×
2
π‘š +1
Now since πœƒ is small
Tanπœ“ = πœ“
So,
πœƒ
π‘š
πœ“= ×
……………………………………….. (10)
2
1+π‘š
This equation gives limiting values of m for different multisections of πœƒ when πœƒ is small
πœƒ
i)
For trisection πœ“ =
πœƒ
πœƒ
3
2
π‘š
So, =
1
or =
3
×
π‘š
3
1+π‘š
2(π»π‘š )
or 3m = 2(1+m)
or 3m – 2m = 2
or m= 2
So as πœƒ becomes smaller and smaller 2 is the limiting value of m as shown in result A.
ii)
For penta section
πœƒ
πœ“=
πœƒ
5
πœƒ
π‘š
2
(1+π‘š )
So = .
5
or 5m = 2m + 2
or 3m = 2
2
or m = is the limiting value of m
3
πœƒ
Similarity for other multisections limiting values can be derived when πœƒ goes smaller in general for th section
𝑛
nβ‰₯2
2
m=
is limiting value ……………………… (11)
π‘›βˆ’2
It can be verirfied that these limiting values provide very good approximations for multisections of angles up to
300.
6. Chart showing limiting values of β€˜m’ for angle 𝜽= 900 and when𝜽 is small.
Multisection
πœƒ
2
πœƒ
3
πœƒ
4
πœƒ
5
πœƒ
6
πœƒ
10
πœƒ
𝑛
πœƒ
𝑛
(when n is very large)
𝜽= 900
∞
3
2
Difference/trend
Nil
2- 3/increasing
1
1
0/static
tan360
2
3
1
2
1
4
2
π‘›βˆ’2
2
𝑛
as per formula (11)
.05984/decreasing
tan300
tan180
2πœƒ 0
tan
𝑛
πœ‹ π‘Ÿπ‘Žπ‘‘
𝑛
(as per formula (9)
DOI: 10.9790/5728-1302030918
𝜽 is small
∞
www.iosrjournals.org
.07735/decreasing
.07492/do
do
πœ‹βˆ’2
𝑛
/do
15 | Page
The multisection of any arbitrary angle with straightedge and compass only
SOME EXAMPLES
Ex-1
Given βˆ π‘ƒπ΄π‘„ = πœƒ
πœƒ
Construct an angle equal to at point A
4
πœƒ
πœƒ/4
Figure-8
Construction- given βˆ π‘ƒπ΄π‘„ = πœƒ
Take any point C on AP and draw a semi circle taking c as centre and AC as radius r which cuts the line AQ at
B.
πœƒ
Cut BD = radius r and join ptsC an D by a line .Let Line CD cuts the semi circle at F. Then ∠𝐹𝐴𝐷 =
4
Since here as per corollary-1
m=1 and BD = mr = r
πœƒ
nence∠𝐹𝐴𝐷 =
4
Ex-2
Given βˆ π‘ƒπ΄π‘„ = 900 , trisect the βˆ π‘ƒπ΄π‘„
3r
Figure-9
Construction : Given βˆ π‘ƒπ΄π‘„ = 900
Take C any point on AP
Draw a semi circle taking C as centre and CA as radius (r)
Draw CB = 2r by compass (2r = diameter of the circle)
Point B being on the line AQ
Let the line CB cuts the semi circle on F join AF. Then ∠𝐹𝐴𝐡 = 900 /2 = 300
By Pythagoras theonem if AC = r; CB = 2r
AB = 3 r so here m = 3
By corollary 3 and formula (9) we have
πœƒ
ifπœƒ = 900 then for πœ“ = 300
3
m = tan2πœ“
= tan2.30
= tan60 = 3
Hence ∠𝐹𝐴𝐡 = 300
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
16 | Page
The multisection of any arbitrary angle with straightedge and compass only
Ex-3
Given ∠PAQ = 200
taking m = 2 trisect it and find the value of tan πœ“&πœ“ approximately
πœ“
Figure-10
Given ∠PAQ = 200 , m = 2 so BD = 2r
∠FAB = πœ“
Now from formula (4) we have
Tanπœ“
1+π‘š 2 +2π‘šπ‘π‘œπ‘ πœƒ βˆ’(1+π‘šπ‘π‘œπ‘ πœƒ )
=
π‘šπ‘ π‘–π‘›πœƒ
1+2 2 +2.2π‘π‘œπ‘  20 0 βˆ’(1+2π‘π‘œπ‘  20 0 )
=
2𝑠𝑖𝑛 20 0
5+4×.93969262 βˆ’(1+2×.93969262 )
=
2×.34202014
2.95952200 βˆ’2.87938524
=
=
So. πœ“
.68404028
.117152107 = tan6.681860
6.681860 =
=
With a difference of (
20
3
20 0
3
approximately
βˆ’ 6.68186)
20 0
=
- .0151930; slightly higher than
3
So m = 2 approximately trisects 200 angle
Also for m = 2; πœƒ is 300, πœ“ = 10.050 with a slight difference than 100i.e. approximately trisects 300.
Note: when angle πœƒ is > 300 and < 900
Than for trisection of angle πœƒ following steps can be adopted.
1
i)
Draw of πœƒ using corollary 1
4
πœƒ
πœƒ
4
12
ii)
Trisect to find
iii)
Make an angle 4×
πœƒ
of .
3
Ex-4
Step:
i)
ii)
iii)
taking m=2
πœƒ
12
i,e 4 limes of the angle obtained in step (ii) this will give very near approximation
Trisect 800 angle
80
Draw = 200
4
Trisect 200 as in Ex-3
Make angle 4 times of (ii)
Thus πœ“ =
1
1
× 80 × × 4
3
=
6.68186×4
80
=
26.7270 = approximately
3
Defference
=
26.727- 26.667
=
.060
Ex-5
Given angle πœƒ = 100
πœƒ
draw
5
solution: since πœƒ= 100 is a small angle using the formula (11)
4
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
17 | Page
The multisection of any arbitrary angle with straightedge and compass only
2
m
=
so by formula (5)
we have
5βˆ’2
=
2
3
π‘š 2 +𝑛 2 +2π‘šπ‘›π‘π‘œπ‘ πœƒ βˆ’(𝑛+π‘šπ‘π‘œπ‘ πœƒ )
tanπœ“
=
putting m = 2, n = 3
tan πœ“
=
=
=
=
=
=
π‘šπ‘ π‘–π‘›πœƒ
2 2 +3 2 +2.23π‘π‘œπ‘  10βˆ’(3+2π‘π‘œπ‘  10)
2𝑠𝑖𝑛 10
13+12×π‘π‘œπ‘  10βˆ’(3+2π‘π‘œπ‘  10)
.01212044
2𝑠𝑖𝑛 10
.34729636
.034899416
tan 1.9987780
tan 20 approximately
2
10 0
So m = gives very near approximation of pentasection of 10 0 angle
and can be drawn as in prev.
3
5
examples.
Note: all the construction of angle multisection given in the previous examples can be done with the help of
straight edge and compass only.
Reference:
(i)
Ordinary geometry, aljebra, coordinate geometry and continued fractions.
(ii)
Internet searches.
DOI: 10.9790/5728-1302030918
www.iosrjournals.org
18 | Page