LOGO LAB 2 Sampling & Quantization Part 2 iugaza2010.blogspot.com [email protected] Part 2: Aliasing in Frequency Domain 2 Ex: x(t)=5 cos (2pi*2000* t)+3 cos (2pi *3000* t) Fs=8000 Hz Fs> 2Fm=2*3000=6 kHZ Sampled Signal 3 Ex: x(t)=5 cos (2pi*2000* t)+3 cos (2pi *5000* t) Fs=8000 Hz Fs< 2Fm=2*5000=10 kHZ 4 Part 2: Aliasing in Frequency Domain See the related video 5 6 7 8 9 Part 3: Quantization function y=uquant(x,n) del=((max(max(x))-(min(min(x)))))/(n-1); r=(x-min(min(x)))/del; r=round(r); y=r*del+min(min(x)); end 10 Example: Quantized x=2sin (2pi*t) using 16 levels. 2 4 2 0 X max X min 2 (2) del 4 /15 L 1 16 1 11 4 0 12 13 2 15 2 0 14 t=0:.001:1; y=2*sin(2*pi*t) figure(1) subplot(311) plot(y) q1=uquant(y,4) subplot(312) plot(q1) q2=uquant(y,32) subplot(313) plot(q2) Ps=mean(y.^2); Pq1=mean(q1.^2); Pq2=mean(q2.^2); SQR1=Ps/Pq1 SQR2=Ps/Pq2 15 2 0 -2 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 2 0 -2 2 0 -2 16 Image Quantization Exercise 1 17 clc clear all y1=imread('office_4.jpg'); y=rgb2gray(y1); for i=1:7; L=2^i; Q=uquant(y,L); i=i+1; pause L figure(i) imshow(Q) end 18 b=1 19 b=2 20 b=3 21 b=4 22 b=5 23 b=6 24 b=7 25 Audio Quantization clc clear all [y,fs]=wavread('speech_dft.wav'); sound(y,fs) for b=1:7; L=2.^b; yQ=uquant(y,L); pause b sound(yQ,fs); end 26 Audio Quantization Exercise 2 semilogy Hint : x=original signal , q=quantized signal , Error=x-q , SQNR=Px/PE , Px=mean(x.^2) 27 plotting SNR plotting SNR 4 1400 10 1200 3 10 1000 2 10 800 1 10 600 0 10 400 -1 10 200 0 -2 0 1 2 3 4 5 6 7 8 10 2 3 4 5 6 7 8 28 Simulink model for sampling and quantization 29 Exercise 3 30 31 Quantization x max x min Quantization step = L 1 Quantization error : eq (n ) x q (n ) x (n ) error 2 2 0.1 0.1 error 2 2 32 Quantization of sinusoidal signal Average power of sinusoidal signal : Psig 1 2 2 1 2 0 S (t )dt 2 2 2 A 2 ( A sin wt ) dt 0 2 Average power of quantized signal : e q (t ) t for ( T t T ) 2T T T 1 1 2 2 Pq (e q (t )) dt ( t ) dt 2T T 2T T 2T 1 2T 2T 2 2 t T dt 12 2 T 33 Signal to quantization noise ratio the signal to quantization noise ratio A2 Psig 2 SQNR Pq 2 12 x max x min A (A ) 2A 12 L L L A2 Psig 2 3 SQNR 2 L2 Pq 4A 2 2 12 L 2 3 SQNR (dB ) 10log10 (SQNR ) 10log10 ( 22b ) 1.76 6.02b 2 34 If the desired sampling rate is lower than the sampling rate of the available data, in this case, we may use a process called downsampling. Scaling X(n) ={ ---- , 0 , 2 , 0 , 1 , 0 , ….} X(n/3) ={ ---- , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , ….} 35 X(n) ={ ---- , 9 , 5 , 2 , 0 , 1 , 2 , 4 , 8 ,…..} X(3n) ={ ---- , 0 , 0 , 0 , 9 , 0 , 4 , 0 , 0 , ….} 36 Example If the original sequence with a sampling period T= 0.1 second (sampling rate = 10 samples per sec) is given by: x(n) : 8 7 4 8 9 6 4 2 2 5 7 7 6 4 . . . and we downsample the data sequence by a factor of 3, we obtain the downsampled sequence as y(m) =y(3n)= 8 8 4 5 6 . . . with the resultant sampling period T = 3 x 0.1 = 0.3 second (the sampling rate now is 3.33 samples per second). 37 By MATLAB, we can do this in an easy way. For example, >> x=1:1:10 x= 1 2 3 4 5 >> x2=x(1:2:end) x2 = 1 3 5 7 9 6 7 8 9 10 38 Anti-aliasing Filter 39 LOGO 40
© Copyright 2026 Paperzz