Journal of Computational Mathematics Vol.xx, No.x, 200x, 1–17. http://www.global-sci.org/jcm doi:10.4208/jcm.1703-m2016-0544 APPROXIMATIONS OF HYPERSINGULAR INTEGRALS FOR NEGATIVE FRACTIONAL EXPONENT* Chaolang Hu College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China Email: [email protected] Tao Lü College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China Email: [email protected] Abstract Rb This article presents approximations of the hypersingular integrals a g(x)(x − t)α dx Rb and a g(x)|x − t|αdx with arbitrary singular point t ∈ (a, b) and negative fraction number α < −1. These general expansions are applicable to a large range of hypersingular integrals, including both popular hypersingular integrals discussed in the literature and other important ones which have not been addressed yet. The corresponding mid-rectangular formulas and extrapolations, which can be calculated in fairly straightforward ways, are investigated. Numerical examples are provided to illustrate the features of the numerical methods and verify the theoretical conclusions. Mathematics subject classification: 65N06, 65B99. Key words: Hypersingular integral, Negative fractional exponent, Mid-rectangular quadrature formula, Extrapolation. 1. Introduction In recent years, it has attracted attention to approximate hypersingular integrals [34, 41] arising from different research areas, such as oil engineering,acoustics, electromagnetics, fracture mechanics, fluid dynamics, heat conduction and elasticity [8, 11, 15, 17, 18, 20–22, 24, 26, 31, 43, 45, 46, 49, 50, 53, 54]. Furthermore, approximations for hypersingular integrals are often needed in order to construct the numerical algorithms for solving hypersingular integral equations [30], which have been utilized to study many real world problems, see [3–7, 28, 29, 32, 33, 37–40, 52] and the references cited therein. In order to evaluate the hypersingular integrals, different numeric techniques have been developed, such as interpolation polynomials, splines, segments of orthogonal series, etc. [9, 23, 25, 27, 44, 47, 48]. Furthermore, A. Sidi discussed the Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities in [42]. I. V. Boykov etc. presented optimal, asymtotically optimal and optimal in order algorithms for numerical evaluation of hypersingular integrals with fixed and varying singularities [1, 2]. The direct method [11, 14], the method of refinable operators [12] and other methods [46, 51] for the evaluation of singular integrals have also been developed. * Received February 18, 2016 / Revised version received January 27, 2017 / Accepted March 9, 2017 / Published online xxxxxx xx, 20xx / 2 C.L. HU AND T. LÜ The Euler-Maclaurin expansions,mid-rectangular quadrature formulas and extrapolations of the following hypersingular integrals are discussed deliberately in [16]. Z b I(f ) = g(x)(x − t)m dx (1.1) a I(f ) = Z b g(x)|x − t|m dx (1.2) a where m is a negative integer and t ∈ (a, b). Nevertheless, we have seldom found literatures which discuss the integrals with fractional singularity as follows. Z b I(f ) = g(x)(x − t)α dx (1.3) a I(f ) = Z b g(x)|x − t|α dx (1.4) a where α is a negative fraction and t ∈ (a, b). In most cases, Euler-Maclaurin expansions of Hypersingular integrals with negative fractional exponent concludes negative exponent of h, so that many quadrature formulas including the mid-rectangular formula are divergent. We have to use Richardson extrapolations to get convergent results. In this article, we will derive Euler-Maclaurin expansions of the general hypersingular inteRb Rb grals a g(x)|x − t|α dx and a g(x)(x − t)α dx for negative fraction α and arbitrary singularity point t ∈ (a, b). Then the corresponding mid-rectangular formulas and extrapolations will be constructed. The rest of this paper is organized as follows: in section 2, a general definition of Hadamard finite-part integrals is recalled; in section 3, we present the asymptotic expansions, quadrature formulas and their extrapolations for (1.3) and (1.4); in section 4, numerical examples are provided to illustrate the features of the numerical methods and verify the theoretical conclusions. 2. Definition of Hadamard Finite-Part Integrals For a function f (x), which could be hypersingular nearby the origin of coordinates, the Hadamard finite-part integral is defined as follows. Definition 1 [36]. Let f (x) be integrable over (ǫ, b) for any ǫ satisfying 0 < ǫ < b < ∞. Suppose that there exists a strictly monotonic increasing sequence α0 < α1 < α2 < · · · , and a non-negative integer J such that the following expansion Z ε b f (x)dx = ∞ X J X Ii,j εαi lnj (ε) (2.1) i=0 j=0 converges for any ε ∈ (0, h) with some h > 0. Then the Hadamard finite-part integral of (2.1) is defined as follows: Z b 0 if αi = 6 0 f or all i, f.p. f (x)dx = (2.2) I if α = 0 f or some i. i,0 i 0 Approximations of Hypersingular Integrals for Negative Fractional Exponent 3 Rb Remark. The right side of the equation (2.1) is an expansion of the integral ε f (x)dx in term of ε where Ii,j are the coefficients of this expansion. In the following, a simple example is provided to illustrate the definition of the Hadamard finite-part integral: Z b t Z b P∞ 1 i e i=0 i! t dt = dt 1.5 t1.5 ε t ε Z b Z b ∞ Z b X 1 i−1.5 = t−1.5 dt + t−0.5 dt + t dt i! ε ε i=2 ε = 2ε −0.5 − 2b −0.5 + 2b = (−2b−0.5 + 2b0.5 + 0.5 − 2ε 0.5 ∞ X 1 1 + · · (bi−0.5 − εi−0.5 ) i! i − 0.5 i=2 ∞ ∞ X X 1 1 1 1 · · bi−0.5 )ε0 + 2ε−0.5 − · · εi−0.5 . i! i − 0.5 i! i − 0.5 i=2 i=2 Then Definition 1 leads to Z b t ∞ X e 1 1 −0.5 0.5 f.p. dt = −2b + 2b + · · bi−0.5 . 1.5 i! i − 0.5 0 t i=2 Based on Definition 1, we recall the following lemma for the fundamental properties of the Hadamard finite-part integral, which will be needed to calculate the exact value of the hypersingular integral in Section 4. Lemma 1 [36]. For any b > 0, We have f.p. Z 0 b xα dx = ln(b) (α = −1), bα+1 /(α + 1) (α 6= −1). Assume α < −1 and m > −α − 2 and g(x) ∈ C m+1 [0, b). Then for any b > 0, we have " # Z b Z b Z b m m (k) X X g (0) (k) k α α f.p. xα+k dx. f.p. g(x)x dx = x g(x) − g (0)x /k! dx + k! 0 0 0 k=0 k=0 3. Euler-Maclaurin Expansions and Approximation Formulas In this section, we will prove the asymptotic expansions for the hypersingular integrals (1.3) and (1.4). These two types of integrals cover not only the popular hypersingular integral discussed in the literature but also other important ones which have not been addressed yet. Based on the general asymptotic expansions obtained in the theorems, mid-rectangular formulas and their high accuracy extrapolations will be presented in the corollaries for different important hypersingular integrals with different specific values of α. Let ζ(p, β) denote the Riemann-zeta function [10], Γ(z) denote the Gamma function [13] , and [x] denote the largest integer ≤ x. Define ψ(z) = ΓΓ(z) ′ (z) . First, we recall the following conclusion from the theorem (4.1) and the formula (5.2) in [36] as the start of the analysis in this section. Theorem 1 [36]. Assume α is a negative fraction, N is a positive integer, g(x) ∈ C n+1 [0, 1], f (x) = xα g(x), and h = N1 . Then for any β ∈ (0, 1), we have the following Euler-Maclaurin 4 C.L. HU AND T. LÜ expansion. N −1 1 X β+k f( ) N N Z 1 1 2πi Z = f.p. f (x)dx + 0 k=0 + n X ζ(−k − α, β) g (k) (0) N k+1+α k=0 c′ +i∞ k! − n X ζ(−k, β) f (k) (1) k=0 N k+1 N p−1 (F0 (p) − F2 (p))ζ(p, β)dp, k! (3.1) c′ −i∞ where c′ ∈ (−n − α − 2, −n − α − 1), F0 (p) is Mellin transform [13] of f (x) , and F2 (p) is Mellin transform of f (x + 1). Since h = 1 N and 1 2πi ′ Z c′ +i∞ N p−1 (F0 (p) − F2 (p))ζ(p, β)dp c′ −i∞ ∞ = N c −1 2π = O(hα+n+2 ), Z ′ ′ ′ N is (F0 (c + is) − F2 (c + is))ζ(c + is, β)ds −∞ then f.p. Z 1 f (x)dx = h 0 N −1 X + k=0 n X f ((β + k)h) − n X ζ(−k − α, β)hk+1+α k=0 ζ(−k, β)hk+1 k=0 f (k) (1) − O(hα+n+2 ). k! g (k) (0) k! (3.2) By using (3.2), we will prove the following two theorems, which are critical to prove the asymptotic expansions for the hypersingular integrals (1.3) and (1.4). Theorem 2. Assume α is a negative fraction, N is a positive integer G(x) = g(x)(x − a)α , h = b−a n+1 [a, b]. Then for any β ∈ (0, 1), we have the following Euler-Maclaurin N , and g(x) ∈ C expansion: Z b N −1 n X X g (k) (a) k+1+α f.p. G(x)dx = h G(a + (β + k)h) − ζ(−k − α, β) h k! a + k=0 n X k=0 (k) ζ(−k, β) k=0 G (b) k+1 h − O(hα+n+2 ). k! Proof. Without loss of generality, let l = b − a > 1, M = α x g(x + a) = G(x + a). There holds: 1 h, (3.3) y = x − a, and f (x) = f ((β + k)h) = G(a + (β + k)h)(k = 0, 1, ..., N ) f (k) (y)|y=l = G(k) (y)|y=b (k ≤ n). (3.4) (3.5) Then f.p. Z b G(x)dx = f.p. a = = f.p. f.p. Z Z Z b (x − a)α g(x)dx a l y α g(y + a)dy 0 1 f (y)dy + 0 Z 1 l f (y)dy, (3.6) 5 Approximations of Hypersingular Integrals for Negative Fractional Exponent f.p. M−1 X 1 Z y α g(y + a)dy = h 0 + k=0 n X f ((β + k)h) − n X k=0 ζ(−k, β)hk+1 f (k) k=0 l Z y α g(y + a)dy = h 1 N −M−1 X + k=0 g (k) (y + a)|y=0 k! (y)|y=1 − O(hα+n+2 ), k! f (1 + (β + k)h) − k=0 n X ζ(−k − α, β)hk+1+α n X ζ(−k, β)hk+1 k=0 (3.7) f (k) (y)|y=1 k! f (k) (y)|y=l ζ(−k, β)hk+1 + O(hn+1 ), k! (3.8) Substitute (3.7), (3.8), (3.4), and (3.5) into (3.6) to obtain f.p. = h Z b G(x)dx a M−1 X − k=0 n X f ((β + k)h) + h N −M−1 X ζ(−k − α, β)hk+1+α = h − k=0 n X n f (k) (y)|y=l g (k) (y + a)|y=0 X + ζ(−k, β)hk+1 − O(hα+n+2 ) k! k! k=0 k=0 N −1 X f (1 + (β + k)h) k=0 G(a + (β + k)h) n ζ(−k − α, β)hk+1+α g (k) (a) X G(k) (b) + ζ(−k, β)hk+1 − O(hα+n+2 ). k! k! k=0 k=0 Theorem 3. Assume α is a negative fraction, N is a positive integer G(x) = g(x)(b − x)α , h = b−a n+1 [a, b]. Then for any β ∈ (0, 1), we have the following Euler-Maclaurin N , and g(x) ∈ C expansion: f.p. Z b G(x)dx a = h N −1 X + k=0 n X k=0 G(a + (β + k)h) − n X ζ(−k − α, 1 − β) k=0 (−1) G(k) (a) k+1 h − O(hα+n+2 ). k! k ζ(−k, 1 − β) (−1)k g (k) (b) k+1+α h k! (3.9) ′ Proof. Let y = b − x, F (y) = y α g(b − y), and β = 1 − β ∈ (0, 1). Then G(u) = G(b − y) = F (y), (3.10) which implies F (k) (y) = (−1)k G(k) (u), F (k) (b − a) = (−1)k G(k) (a). (3.11) 6 C.L. HU AND T. LÜ Hence N −1 X ′ G(b − (1 − β + k)h) = k=0 N −1 X ′ G(a + (N − 1 − k + β )h) k=0 = N −1 X ′ ′ G(a + (k + β )h) k′ =0 = N −1 X ′ G(a + (k + β )h). (3.12) k=0 Using (3.3), (3.10), (3.11) and (3.12), we obtain Z b f.p. G(x)dx a = f.p. = h Z y α g(b − y)dy 0 N −1 X F (0 + (β + k)h) − + k=0 n X k=0 = h b−a N −1 X + k=0 n X = h + k=0 n X ζ(−k − α, β)hk+1+α k=0 g (k) (b − y)|y=0 k! F (k) (y)|y=b−a ζ(−k, β)hk+1 − O(hα+n+2 ) k! G(b − (β + k)h) − n X ζ(−k − α, β)hk+1+α k=0 ζ(−k, β)hk+1 k=0 N −1 X n X g (k) (b) · (−1)k k! (−1) G(k) (a) − O(hα+n+2 ) k! ′ k G(a + (β + k)h) − n X ′ ζ(−k − α, 1 − β )hk+1+α k=0 ′ ζ(−k, 1 − β )hk+1 k=0 g (k) (b) · (−1)k k! (−1)k G(k) (a) − O(hα+n+2 ). k! Based on the above two theorems, we will prove Theorem 4, Theorem 5 and Theorem 6 for the Euler-Maclaurin expansions of the hypersingular integrals (1.3) and (1.4). Three cases will be discussed in these three theorems respectively. In the following, we first prove the expansion for the hypersingular integral (1.3). Theorem 4. Assume α = − pq < 0, p 6= 1, p & q are odd numbers and coprime, N is a positive n+1 integer, h = b−a [a, b], xi = a + ih (i = 0, 1, · · · , N ), t ∈ {xi |i = 1, 2, · · · , N − 1}, N , g(x) ∈ C q α and G(x) = g(x)(x − t) = g(x)(x − t)− p . Then we have the following Euler-Maclaurin expansion: f.p. Z a b G(x)dx = h N −1 X k=0 [ n+1 2 ] + X l=1 n+1 [ 2 ] X 1 1 2g (2l−1) (t) 2l+α G(a + ( + k)h) − ζ(1 − 2l − α, ) h 2 2 (2l − 1)! l=1 1 G(2l−1) (b) − G(2l−1) (a) 2l ζ(1 − 2l, ) h + O(hn+2+α ). 2 (2l − 1)! (3.13) 7 Approximations of Hypersingular Integrals for Negative Fractional Exponent Proof. First we have Z Z b Z t f.p. g(x)(x − t)α dx = −f.p. g(x)(t − x)α dx + f.p. a a b g(x)(x − t)α dx. (3.14) t Let F (x) = g(x)(t − x)α = −G(x). (3.15) F k (a) = −Gk (a). (3.16) tnen Since ζ(−2k, 1/2) = 0, k = 0, 1, · · · , then by substituting (3.3) and (3.9) into (3.14) and letting β = 12 , t = xi (i = 1, 2, · · · , N − 1), we obtain f.p. = −h b Z g(x)(x − t)α dx = −f.p. a i−1 X k=0 − n X k=0 +h n k=0 = h i−1 X + k=0 n X k=0 = h i−1 X + G(x)dx t k=0 1 (−1) F (k) (a) k+1 ζ(−k, 1 − ) h + O(hn+2+α ) 2 k! n X 1 g (k) (t) k+1+α 1 G(t + ( + k)h) − ζ(−k − α, ) h 2 2 k! k=0 (k) 1 G (b) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! k=0 (k) 1 g (t) ζ(−k − α, ) ((−1)k − 1)hk+1+α 2 k! 1 G(k) (b) + (−1)k G(k) (a) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! n+1 k=1 k=i l=1 1 G(k) (b) + (−1)k G(k) (a) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! N −1 X k=0 X l=1 n+1 [ 2 ] X 1 1 2g (2l−1) (t) 2l+α G(a + ( + k)h) − ζ(1 − 2l − α, ) h 2 2 (2l − 1)! [ n+1 2 ] + b [ 2 ] N −1 X X 1 1 1 2g (2l−1) (t) 2l+α G(a + ( +k)h) + h G(a + ( + k)h)− ζ(1−2l − α, ) h 2 2 2 (2l − 1)! k=0 n X = h a Z NX −i−1 1 1 G(a + ( + k)h) + h G(t + ( + k)h) 2 2 k=0 n X + F (x)dx + f.p. k k=0 + t X 1 1 g (k) (t) F (a + ( + k)h) + ζ(−k − α, 1 − ) (−1)k hk+1+α 2 2 k! NX −i−1 n X Z l=1 1 G(2l−1) (b) − G(2l−1) (a) 2l ζ(1 − 2l, ) h − O(hn+2+α ). 2 (2l − 1)! Specifically, choosing −2 < α < −1 in Theorem 4, we can obtain a mid-rectangular formula in Corollary 4.1 and choosing −4 < α < −1 we can obtain a mid-rectangular extrapolation 8 C.L. HU AND T. LÜ formula in Corollary 4.2. Corollary 4.1. Assume −2 < α = − pq < −1, p 6= 1, p & q are odd numbers and coprime, n+1 [a, b], n ≥ 1, xi = a + ih (i = 0, 1, · · · , N ), N is a positive integer, h = b−a N , g(x) ∈ C q t ∈ {xi |i = 1, 2, · · · , N − 1}, and G(x) = g(x)(x − t)α = g(x)(x − t)− p . Let the mid-rectangular formula N −1 X 1 (3.17) Ih = h G(a + ( + k)h). 2 k=0 Then f.p. b Z g(x)(x − t)α dx = Ih + O(h2+α ). (3.18) a The conclusion is obvious. Corollary 4.2. Assume −2 < α = − pq < −1, p 6= 1, p & q are odd numbers and coprime, n+1 [a, b], n ≥ 1, xi = a + ih (i = 0, 1, · · · , N ), N is a positive integer, h = b−a N , g(x) ∈ C q t ∈ {xi |i = 1, 2, · · · , N − 1}, and G(x) = g(x)(x − t)α = g(x)(x − t)− p . Let the mid-rectangular formula N −1 X 1 Ih = h G(a + ( + k)h). (3.19) 2 k=0 Qh = 22+α I h − Ih 2 Then f.p. 2 22+α − 1 . (3.20) b Z g(x)(x − t)α dx = Q h + O(h2 ). 2 a Proof. Using (3.13), we have the following formula. Z b f.p. g(x)(x − t)α dx = Ih + ch2+α + O(h4+α ) + O(h2 ). (3.21) (3.22) a and f.p. Z b g(x)(x − t)α dx = I h + c 2 a h2+α + O(h4+α ) + O(h2 ). 22+α (3.23) ′ where c = −2ζ(−1 − α)g (t). Using (3.22) and (3.23), we get (3.21) easily. − pq Theorem 5. Assume α = < 0, p 6= 1, p is an odd number, q is an even number,p and q n+1 are coprime, N is a positive integer, h = b−a [a, b], xi = a + ih (i = 0, 1, · · · , N ), N , g(x) ∈ C q t ∈ {xi |i = 1, 2, · · · , N − 1}, and G(x) = g(x)(x − t)α = g(x)(x − t)− p . Then we have the following Euler-Maclaurin expansion: f.p. Z a b G(x)dx = h N −1 X k=0 [ n+1 2 ] + X l=1 [n] 2 X 1 1 2g (2l) (t) 2l+1+α G(a + ( + k)h) − ζ(−2l − α, ) h 2 2 (2l)! l=0 1 G(2l−1) (b) − G(2l−1) (a) 2l ζ(1 − 2l, ) h − O(hn+2+α ). (3.24) 2 (2l − 1)! 9 Approximations of Hypersingular Integrals for Negative Fractional Exponent Proof. First we have Z b Z t Z f.p. g(x)(x − t)α dx = f.p. g(x)(t − x)α dx + f.p. a a b g(x)(x − t)α dx. (3.25) t Let F (x) = g(x)(t − x)α = G(x). (3.26) F k (a) = Gk (a). (3.27) then Since ζ(−2k, 1/2) = 0, k = 0, 1, · · · , then by substituting (3.3) and (3.9) into (3.25) and letting β = 12 , t = xi (i = 1, 2, · · · , N − 1), we obtain f.p. Z b α g(x)(x − t) dx = f.p. a = h i−1 X n + k=0 n X k=0 = h − k=0 n X k=0 = h i−1 X 1 (−1) F (k) (a) k+1 ζ(−k, 1 − ) h − O(hn+2+α ) 2 k! + k=0 1 G(k) (b) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! k=0 1 g (k) (t) ζ(−k − α, ) ((−1)k + 1)hk+1+α 2 k! 1 G(k) (b) + (−1)k G(k) (a) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! n k=1 k=i (k) 1 G ζ(−k, ) 2 N −1 X k=0 X l=1 k l=0 (k) (b) + (−1) G k! (a) hk+1 − O(hn+2+α ) [n] 2 X 1 1 2g (2l) (t) 2l+1+α G(a + ( + k)h) − ζ(−2l − α, ) h 2 2 (2l)! [ n+1 2 ] + n X 1 g (k) (t) k+1+α 1 G(t + ( + k)h) − ζ(−k − α, ) h 2 2 k! [2] N −1 X X 1 1 1 2g (2l) (t) 2l+1+α G(a + ( + k)h) − h G(a + ( + k)h) + h ζ(−2l − α, ) 2 2 2 (2l)! k=0 n X = h G(x)dx t NX −i−1 1 1 G(a + ( + k)h) + h G(t + ( + k)h) 2 2 k=0 n X + a b k=0 NX −i−1 i−1 X F (x)dx + f.p. Z k k=0 + t X 1 1 g (k) (t) ζ(−k − α, 1 − ) (−1)k hk+1+α F (a + ( + k)h) − 2 2 k! k=0 n X +h Z l=0 1 G(2l−1) (b) − G(2l−1) (a) 2l ζ(1 − 2l, ) h − O(hn+2+α ). 2 (2l − 1)! Specifically, choosing −3 < α < −1 in Theorem 5, we can obtain a mid-rectangular formula in Corollary 5.1 . 10 C.L. HU AND T. LÜ Corollary 5.1. Assume −3 < α = − pq < −1, p 6= 1, p is an odd number, q is an even n+1 number,p and q are coprime, N is a positive integer, h = b−a [a, b], xi = a+ih (i = N , g(x) ∈ C q α 0, 1, · · · , N ), t ∈ {xi |i = 1, 2, · · · , N − 1}, and G(x) = g(x)(x − t) = g(x)(x − t)− p . Let N −1 X 1 Ih = h G(a + ( + k)h). (3.28) 2 k=0 Qh = Rh = Then Z b Z b f.p. 21+α I h − Ih 2 21+α − 1 . 23+α Q h − Qh 2 23+α − 1 (3.29) . (3.30) g(x)(x − t)α dx = Ih + O(h1+α ). (3.31) g(x)(x − t)α dx = Qh + O(h3+α ). (3.32) a f.p. a f.p. b Z g(x)(x − t)α dx = Rh + O(h2 ). (3.33) a Proof. Using (3.24),we have the following formula. f.p. Z b g(x)(x − t)α dx = Ih + c1 h1+α + c2 h3+α + O(h2 ). (3.34) a Taking similar proving strategy to corollary 4.2, we get the above conclusions easily. Theorem 6. Assume α = − pq < 0, p 6= 1, p and q are coprime, N is a positive integer, n+1 [a, b], xi = a + ih (i = 0, 1, · · · , N ), t ∈ {xi |i = 1, 2, · · · , N − 1}, and h = b−a N , g(x) ∈ C q α G(x) = g(x)|x − t| = g(x)|x − t|− p . Then we have the following Euler-Maclaurin expansion: f.p. Z b G(x)dx = a h N −1 X k=0 [ n+1 2 ] + X l=1 [n] 2 X 1 1 2g (2l) (t) 2l+1+α ζ(−2l − α, ) G(a + ( + k)h) − h 2 2 (2l)! l=0 1 G(2l−1) (b) − G(2l−1) (a) 2l ζ(1 − 2l, ) h − O(hn+2+α ). (3.35) 2 (2l − 1)! Proof. First we have f.p. Z b α g(x)|x − t| dx = f.p. a Z t α g(x)(t − x) dx + f.p. a Z b g(x)(x − t)α dx. (3.36) t Let F (x) = g(x)(t − x)α = G(x). (3.37) F k (a) = Gk (a). (3.38) then 11 Approximations of Hypersingular Integrals for Negative Fractional Exponent Since ζ(−2k, 1/2) = 0, k = 0, 1, · · · , then by substituting (3.3) and (3.9) into (3.36) and letting β = 12 , t = xi (i = 1, 2, · · · , N − 1), we obtain f.p. Z b g(x)(x − t)α dx = f.p. a = h i−1 X k=0 n X k=0 − k=0 n X k=0 = h i−1 X 1 (−1) F (k) (a) k+1 ζ(−k, 1 − ) h − O(hn+2+α ) 2 k! + k=0 (k) 1 G (b) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! k=0 (k) 1 g (t) ζ(−k − α, ) ((−1)k + 1)hk+1+α 2 k! 1 G(k) (b) + (−1)k G(k) (a) k+1 ζ(−k, ) h − O(hn+2+α ) 2 k! n k=1 k=i (k) 1 G ζ(−k, ) 2 N −1 X k=0 X l=1 l=0 (b) + (−1)k G(k) (a) k+1 h − O(hn+2+α ) k! [n] 2 X 1 1 2g (2l) (t) 2l+1+α h G(a + ( + k)h) − ζ(−2l − α, ) 2 2 (2l)! [ n+1 2 ] + n X 1 g (k) (t) k+1+α 1 ζ(−k − α, ) h G(t + ( + k)h) − 2 2 k! [2] N −1 X X 1 2g (2l) (t) 2l+1+α 1 1 ζ(−2l − α, ) G(a + ( + k)h) − G(a + ( + k)h) + h h 2 2 2 (2l)! k=0 n X = h G(x)dx t NX −i−1 1 1 G(a + ( + k)h) + h G(t + ( + k)h) 2 2 k=0 n X + b k=0 k=0 = h Z k NX −i−1 i−1 X F (x)dx + f.p. a n + + t X 1 1 g (k) (t) F (a + ( + k)h) − ζ(−k − α, 1 − ) (−1)k hk+1+α 2 2 k! k=0 n X +h Z l=0 1 G(2l−1) (b) − G(2l−1) (a) 2l ζ(1 − 2l, ) h − O(hn+2+α ). 2 (2l − 1)! Specifically, choosing −3 < α < −1 in Theorem 6, we can obtain a mid-rectangular formula in Corollary 6.1. Corollary 6.1. Assume −3 < α = − pq < −1, p 6= 1, p and q are coprime, N is a positive n+1 integer, h = b−a [a, b], xi = a + ih (i = 0, 1, · · · , N ), t ∈ {xi |i = 1, 2, · · · , N − 1}, N , g(x) ∈ C q α and G(x) = g(x)|x − t| = g(x)|x − t|− p . Let N −1 X 1 Ih = h G(a + ( + k)h). (3.39) 2 k=0 Qh = 21+α I h − Ih 2 21+α − 1 . (3.40) 12 C.L. HU AND T. LÜ Rh = Then Z b Z b f.p. 23+α Q h − Qh 2 23+α − 1 . (3.41) g(x)|x − t|α dx = Ih + O(h1+α ). (3.42) g(x)|x − t|α dx = Qh + O(h3+α ). (3.43) a f.p. f.p. a Z b g(x)|x − t|α dx = Rh + O(h2 ). (3.44) a Proof. Using (3.35),we have the following formula. f.p. Z b g(x)|x − t|α dx = Ih + c1 h1+α + c2 h3+α + O(h2 ). (3.45) a Taking similar proving strategy to corollary 4.2, we get the above conclusions easily. 4. Numerical Examples In this section, we will provide several examples to illustrate the features of the numerical methods and verify the theoretical conclusions. Example 1. Consider the hypersingular integral I(y) = Z 1 g(x) 5 0 (x − y) 3 dx, y ∈ (0, 1). When g(x) = x2 , the exact solution is I(y) = Z 0 1 x2 (x − y) 5 3 dx = −2 −2 1 1 4 4 3 2 3 y [(1+y) 3 −(1−y) 3 ]+6y[(1−y) 3 +(1+y) 3 ]+ [(1−y) 3 −(1+y) 3 ]. 2 4 Using the mid-rectangular formula (3.17) and extrapolation formula (3.20), we obtain the (1) 2h | numerical results in Table 1 and Table 2. The rate rh = log2 |I−I |I−Ih | ≈0.3331 in Table 1 shows (2) 2h | that (3.17) has the order O(h2− 3 ) and the rate rh = log2 |I−Q |I−Qh | ≈ 1.9937 in Table 1 shows that (3.20) has the second order accuracy. This numerical performance is consistent with the theoretical conclusions in (3.18) and (3.21). 5 Table 1. Numerical results for I = h Ih |I − Ih | (1) rh Qh |I − Qh | (2) rh 1/23 1.5434565948 0.9036050369 R1 0 x2 5 dx ≈ 2.4470616318 at y = 0.25. (x−y) 3 1/24 1.7287364976 0.7183251341 0.3310553165 2.4415679627 0.0054936690 1/25 1.8766385277 0.5704231041 0.3326045790 2.4456652766 0.0013963551 1.9761040960 1/26 1.9942441842 0.4528174476 0.3331028691 2.4467110257 0.0003506060 1.9937431911 13 Approximations of Hypersingular Integrals for Negative Fractional Exponent Table 2. Numerical results for I = h Ih |I − Ih | (1) rh Qh |I − Qh | (2) rh 1/24 0.8843452915 0.3592284430 R1 0 x2 5 dx ≈ 1.2435737344 at y = 0.125. (x−y) 3 1/25 0.9583455958 0.2852281386 0.3327852690 1.2430486022 0.0005251323 1/26 1.0171608565 0.2264128779 0.3331602969 1.2434421090 0.0001316255 1.9962419135 1/27 1.0638629211 0.1797108133 0.3332787988 1.2435408065 0.0000329280 1.9990529100 Example 2. Consider the hypersingular integral Z 1 g(x) I(y) = 8 dx, y ∈ (0, 1). 0 (x − y) 3 When g(x) = x2 , the exact solution is Z 1 −5 −5 −2 −2 1 1 x2 −3 2 I(y) = y [(1 − y) 3 + y 3 ] − 3y[(1 − y) 3 − y 3 ] + 3[(1 − y) 3 + y 3 ]. 8 dx = 5 0 (x − y) 3 Based on formulas (3.28), (3.29) and (3.30), we obtained the results in Table 3 and Table (1) 2h | 4. Obviously, Ih in (3.28) is divergent. Furthermore, the rate rh = log2 |I−Q |I−Qh | ≈ 0.3333 (2) 2h | in Table 3 shows that Qh has the order O(h3− 3 ) and the rate rh = log2 |I−R |I−Rh | ≈ 1.9914 in Table 3 shows that Rh has the second order accuracy, which numerically verify the conclusions of Corollary 5.1. 8 Table 3: Numerical results for I = R1 0 x2 8 (x−y) 3 dx ≈ 5.1583367411 at y = 0.25. h 1/25 1/26 1/27 1/28 1/29 Ih 281.2302286825 883.7881379560 2796.3456476958 8867.9842113956 28143.9548478132 Qh 4.1669003995 4.3713366396 4.5336696266 4.6625319066 |I − Qh | 0.9914363416 0.7870001015 0.6246671145 0.4958048345 (1) rh 0.3331563207 0.3332762404 0.3333152425 Rh 5.1578687046 5.1582169154 5.1583066046 |I − Rh | 0.0004680365 0001198257 0.0000301365 (2) rh 1.9656836145 1.9913518799 Table 4. Numerical results for I = R1 0 x2 8 (x−y) 3 dx ≈ 5.1477711257 at y = 0.125. h 1/26 1/27 1/28 1/29 1/210 Ih 224.2660840396 702.5166832538 2220.5146021397 7039.5773280917 22338.9253621600 Qh 4.3607426072 4.5230974749 4.6519646935 4.7542486140 |I − Qh | 0.7870285186 0.6246736508 0.4958064322 0.3935225117 (1) rh 0.3333132366 0.3333256892 0.3333308197 Rh 5.1477289460 5.1477583917 5.1477678021 |I − Rh | 0.0000421797 0.0000127340 0.0000033236 (2) rh 1.7278608079 1.9378741864 Example 3. Consider the hypersingular integral Z 1 g(x) I(y) = 5 dx, y ∈ (0, 1). 0 |x − y| 2 14 C.L. HU AND T. LÜ When g(x) = x2 , the exact solution is I(y) = Z 0 1 x2 |x − y| 5 2 dx = −3 −1 16 1 2 1 y 2 − y 2 (1 − y) 2 − 4y(1 − y) 2 + 2(1 − y) 2 . 3 3 Using formulas (3.39), (3.40) and (3.41), we obtain the numerical results in Table 5 and Table 6. As predicted in theory, Ih in (3.39) is divergent. However, the straightforward ex(1) trapolations Qh and Rh from (3.40) and (3.41) are convergent. Furthermore, the rate rh = (2) |I−Q2h | |I−R2h | log2 |I−Qh | ≈ 0.4999 and the rate rh = log2 |I−Rh | ≈ 1.9917 in Table 5 , which shows Qh 5 has order O(h3− 2 ) and Rh has order O(h2 ) , are consistent with Corollary 6.1. Table 5. Numerical results for R1 0 x2 5 |x−y| 2 dx ≈ 3.1798669059 at y=0.25. h 1/25 1/26 1/27 1/28 1/29 Ih 144.3220894460 402.8437505591 1133.9207607613 3201.6249012144 9049.9089524430 Qh 2.9318980546 3.0044568253 3.0558154384 3.0921447938 |I − Qh | 0.2479688514 0.1754100807 0.1240571259 0.0877235016 (1) rh 0.4994272471 0.4997928582 0.4999263475 Rh 3.1796291936 3.1798060988 3.1798516162 |I − Rh | 0.0002377124 0.0000608071 0.0000152898 (2) rh 1.9669044639 1.9916726441 Table 6. Numerical results for R1 0 x2 5 |x−y| 2 dx ≈ 3.2091975669 at y=0.125. h 1/26 1/27 1/28 1/29 1/210 Ih 103.0117536928 285.8142232513 802.7637472161 2264.8513695386 6400.2126812477 Qh 3.0337632745 3.0851404410 3.1214740653 3.1471671996 |I − Qh | 0.1754100807 0.1240514675 0.0877221122 0.0620303673 (1) rh 0.4999261751 0.4999693015 0.4999887314 Rh 3.2091758934 3.2091911939 3.2091959127 |I − Rh | 0.0000216735 0.0000063730 0.0000016542 (2) rh 1.7658892315 1.9458312418 5. Conclusions Rb This paper presents Euler-Maclaurin expansions for the hypersingular integrals a g(x)|x − Rb t|α dx and a g(x)(x−t)α dx with arbitrary singular point t ∈ (a, b) and negative fraction number α < −1, which are critical for many kinds of real world problems. Mid-rectangular formulas and their high accuracy extrapolation formulas are also constructed. These formulas can be calculated in a fairly straightforward way. Hence the implementation of these methods for real world problems has a low cost. Acknowledgments. This work was supported by Major Research Plan of National Natural Science Foundation of China (91430105) References [1] I.V. Boykov, Numerical methods of computation of singular and hypersingular integrals, Internat. J. Math. Math. Sci., 28:3 (2001), 127-179. Approximations of Hypersingular Integrals for Negative Fractional Exponent 15 [2] I.V. Boykov, E.S. Ventsel and A.I. Boykov, Accuracy optimal methods for evaluating hypersingular integrals, Appl. Numer. Math., 59 (2009), 1366-1389. [3] Y.S. Chan, A.C. Fannjiang and G.H. Paulino, Integral equations with hypersingular kernels-theory and applications to fracture mechanics, Int. J. Eng. Sci., 41 (2003), 683-720. [4] Y.Z. Chen, A numerical solution technique of hypersingular integral equation for curved cracks, Comm. Numer. Methods Engrg., 19:8 (2003), 645-655. [5] D.L. Clements, M. Lobo and N. Widana, A hypersingular boundary integral equation for a class of problems concerning infiltration from periodic channels, Electron. J. Bound. Elem., 5:1 (2007), 1-16. [6] A.G. Davydov, E.V. Zakharov, and Y.V. Pimenov, Hypersingular integral equations in computational electrodynamics, Comput. Math. Model., 14:1 (2003), 1-15. [7] A.G. Davydov and E.V. Zakharov and Y.V. Pimenov, Hypersingular integral equations for the diffraction of electromagnetic waves on homogeneous magneto-dielectric bodies, Comput. Math. Model., 17:2 (2006), 97-104. [8] Y.F. Dong and H.C. Gea, A non-hypersingular boundary integral formulation for displacement gradients in linear elasticity, Acta Mech., 129:3-4 (1998), 187-205. [9] Q.K. Du, Evaluations of certain hypersingular integrals on interval, Internat. J. Numer. Methods Engrg., 51 (2001), 1195-1210. [10] M. Fogiel, Handbook of Mathematical, Scientific, and Engineering, Research and Education Association, New Jersey, 1994. [11] A. Frangi and M. Guiggiani, Boundary element analysis of kirchhoff plates with direct evaluation of hypersingular integrals, Int. J. Numer. Meth. Engng., 46 (1999), 1845-1863. [12] L. Gori , E. Pellegrino and E. Santi, Numerical evaluation of certain hypersingular integrals using refinable operators, Math. Comput. Simulation, 82 (2011), 132-143. [13] L.S. Gradsbteyn and L.M. Ryzbik, Table of Integrals, Series and Produts, Elsevier Pte Ltd,Singapore, 2004. [14] L.J. Gray, J.M. Glaeser and T. Kapla, Direct evaluation of hypersingular Galerkin supface integrals, SIAM J. Sci. Comput., 25:5 (2004), 1534-1556. [15] L.J. Gray, L.F. Martha, and A.R. Ingraffea, Hypersingular integrals in boundary element fracture analysis, Internat. J. Numer. Methods Engrg., 29:6 (1990), 1135-1158. [16] C.L. Hu, X.M. He and T. Lü, Euler-Maclaurin expansions and approximations of hypersingular integrals, Discrete. Cont. Dyn-B , 20:5 (2015), 1355-1375. [17] C.L. Hu, J. Lu, and X.M. He, Productivity formulae of an infinite-conductivity hydraulically fractured well producing at constant wellbore pressure based on numerical solutions of a weakly singular integral equation of the first kind, Math. Probl. Eng., Article ID 428596, 18 pages, 2012. [18] C.L. Hu, J. Lu, and X.M. He. Numerical solutions of hypersingular integral equation with application to productivity formulae of horizontal wells producing at constant wellbore pressure, Int. J. Numer. Anal. Mod., Series B, 5:3 (2014), 269-288. [19] J. Huang, Z. Wang and R. Zhu, Asymptotic error expansion for hypersingular integrals, Adv. Comput. Math., 38:2 (2013), 257-279. [20] O. Huber, R. Dallner, P. Partheymüller, and G. Kuhn, Evaluation of the stress tensor in 3-D elastoplasticity by direct solving of hypersingular integrals, Internat. J. Numer. Methods Engrg. 39:15 (1996), 2555-2573. [21] O. Huber, A. Lang, and G. Kuhn, Evaluation of the stress tensor in 3D elastostatics by direct solving of hypersingular integrals, Comput. Mech., 12:1-2 (1993), 39–50. [22] N.I. Ioakimidis, Two-dimensional principal value hypersingular integrals for crack problems in three-dimensional elasticity, Acta Mech., 82:1-2 (1990), 129-134. [23] N.I. Ioakimidis, The Gauss-Laguerre quadrature rule for finite-part integrals, Comm. Numer. Methods Engrg., 9:5 (1993), 439-450. [24] M.A. Kelmanson, Hypersingular boundary integrals in cusped two-dimensional free-surface Stokes 16 C.L. HU AND T. LÜ flow, J. Fluid Mech., 514 (2004), 313-325. [25] P. Kolm and V. Rokhlin, Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41 (2001), 327-352. [26] A. M. Korsunsky, On the use of interpolative quadratures for hypersingular integrals in fracture mechanics. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458:2027 (2002), 2721-2733. [27] A.M. Korsunsky, Gauss-Chebyshev quadrature formulae for strongly singular integrals, Quart. Appl. Math., 56:3 (1998), 461-472. [28] L.A. de Lacerda and L.C. Wrobel, Hypersingular boundary integral equation for axisymmetric elasticity. Internat, J. Numer. Methods Engrg., 52:11 (2001), 1337-1354. [29] S. Li and Q. Huang, An improved form of the hypersingular boundary integral equation for exterior acoustic problems, Eng. Anal. Bound. Elem., 34:3 (2010), 189-195. [30] I.K. Lifanov, L.N. Poltavskii and G.M. Vainikko, Hypersingular integral equations and their applications, Chapman&Hall/CRC, Boca Raton, FL, 2004. [31] A.M. Lin’kov and S.G. Mogilevskaya, Complex hypersingular integrals and integral equations in plane elasticity, Acta Mech., 105:1-4 (1994), 189-205. [32] Y. Liu and S. Chen, A new form of the hypersingular boundary integral equation for 3 − D acoustics and its implementation with C0 boundary elements, Comput. Methods Appl. Mech. Engrg., 173:3-4 (1999), 375-386. [33] Y. Liu and F.J. Rizzo, A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput. Methods Appl. Mech. Engrg., 96:2 (1992), 271287. [34] G.Monegato, Definitions, properties and applications of finite-part integrals, J. Comput.Appl.Math., 229 (2009), 425-439. [35] G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50 (1994), 9-31. [36] G. Monegato and J. N. Lyness, The Euler-Maclaurin expansion and finite-part integrals, Numer. Math., 81:2 (1998), 273-291. [37] G. Monegato, R. Ortaand R. Tascone, A fast method for the solution of a hypersingular integral equation arising in a waveguide scattering problem, Internat. J. Numer. Methods Engrg. , 67 (2006), 272-297. [38] L.M. Romero and F.G. Benitez, Traffic flow continuum modeling by hypersingular boundary integral equations, Internat. J. Numer. Methods Engrg., 82:1 (2010), 47-63. [39] G. Rus and R. Gallego, Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation, Comput. Methods Appl. Mech. Engrg., 196:25-28 (2007), 2596-2618. [40] A. Salvadori, Hypersingular boundary integral equations and the approximation of the stress tensor, Internat. J. Numer. Methods Engrg., 72:6 (2007), 722-743. [41] S.G. Samko, Hypersingular integrals and their applications. Analytical Methods and Special Functions, 5. Taylor & Francis, Ltd., London, 2002. [42] A. Sidi, Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities, Math. Comp., S 0025-5178(2012)02597-X, 2012. [43] V. Sládek, J. Sládek, and M. Tanaka, Regularization of hypersingular and nearly singular integrals in the potential theory and elasticity, Internat. J. Numer. Methods Engrg., 36:10 (1993), 16091628. [44] W. W. Sun and J. M. Wu, Newton-Cotes formulae for the numerical evaluation of certain hypersingular integrals, Computing, 75 (2005), 297-309. [45] A. Sutradhar, G.H. Paulino, and L.J. Gray, On hypersingular surface integrals in the symmetric Galerkin boundary element method: application to heat conduction in exponentially graded materials, Internat. J. Numer. Methods Engrg., 62:1 (2005), 122-157. [46] M.S. Tong and W.C. Chew, A Novel Approach for evaluating hypersingular and strongly singular Approximations of Hypersingular Integrals for Negative Fractional Exponent [47] [48] [49] [50] [51] [52] [53] [54] 17 surface integrals in electromagnetics, IEEE Trans. Antennas and Propagation, 58:11 (2010), 35933601. J.M. Wu and W.W. Sun, The superconvergence of the comosite trapezoidal rule for Hadamard finite-part integrals, Numer. Math., 102:2 (2005), 343-363. J.M. Wu and W.W. Sun, The superconvergence of Newton-Cotes rules for the Hadamard finitepart integrals on an interval, Numer. Math., 109:1 (2008), 143-165. E.V. Zakharov and I.V. Khaleeva, Hypersingular integral operators in diffraction problems of electromagnetic waves on open surfaces. Comput. Math. Model., 5:3 (1994), 208–213. P. Zhang and T.W. Wu, A hypersingular integral formulation for acoustic radiation in moving flows, J. Sound Vibration, 206:3 (1997), 309-326. X. Zhang, J. Wu and D.H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87:4 (2010), 855-876. C. Zheng, T. Matsumoto, T. Matsumoto, and H. Chen, Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method, Eng. Anal. Bound. Elem., 35:11 (2011), 1225-1235. V.V. Zozulya, Regularization of the hypersingular integrals in 3-D problems of fracture mechanics. Boundary elements and other mesh reduction methods XXX, WIT Trans. Model. Simul., WIT Press, Southampton, 47 (2008), 219-228. V.V. Zozulya and P.I. Gonzalez-Chi, Weakly singular, singular and hypersingular integrals in 3-D elasticity and fracture mechanics, J. Chinese Inst. Engrs., 22:6 (1999), 763-775.
© Copyright 2026 Paperzz