Endosymbiotic bacteria in the clam Loripes lacteus: Location, characterization and aspects of symbiont regulation Emmanuelle Pales Espinosa1, Arnaud Tanguy Sophie Le Panse 4, François Lallier 2,3 Bassem Allam1 and Isabelle Boutet 2,3 SoMAS, Stony Brook University, Stony Brook, NY 11794 2 CNRS, UMR 7144, Station Biologique de Roscoff, 29682 Roscoff, France, UPMC Université Paris 6, Station Biologique de Roscoff, 29682, Roscoff, France 4 CRBM FR2424, Station Biologique de Roscoff, 29682 Roscoff, France 1 3 2,3 Symbiosis Close interaction between different species The endosymbiotic theory: Multicellular organisms would result from a symbiosis between various sorts of bacteria (Brinkman et al., 2002; Margulis, 1999; Moran, 2006) Therefore an effort to better understand the interactions of actual host/symbiont may shed lights on co-evolution histories Hawaiian bobtail squid/Vibrio Fungus/Algae/Cyanobacteria Clown Loripes Algae/Coral fish/Anemona lacteus/Bacteria (photo: Wikipedia) (photo: Wikipedia) (photo: (photo: (photo: Maricopa Pales Wikipedia) Espinosa CC) et al.) In this study, we used: (Pales Espinosa et al., in prep.) The association bivalve/endosymbiotic bacteria Contemporary techniques to Determine symbiont(s) phylogeny Investigate their distribution Study symbiont dynamics Initial acquisition, regulation Small marine Lucinids Reduced sediments of seagrass bed Harbor endosymbiotic bacteria in bacteriocytes Chemoautotrophic sulphur-oxidizing bacteria (Herry et al., Roscoff, France 1989; Johnson and Fernandez, 2001) 1 cm Methods Transmission electron microscopy (TEM) DNA extraction 16S rRNA specific primers (bacteria) Amplification, cloning and sequencing Phylogenetic tools (Bioedit, PhyML, Treeview ..) Gill of Lucinids (Thesis of Elizabeth N., 2012) Microvilli Bacteria located in bacteriocytes Endobacteria Gram negative with double membrane, DNA strands, and electron dense or translucent granules No bacterial division observed Bacteriocyte Gill Granules DNA strands Double membrane Endobacterium Lucinids γ-Proteobacteria L. lacteus from Croatia Clone 1-Roscoff Solemyids Bacteria found in sediment Clone 2-Roscoff 0.1 Methods Fluorescence in situ hybridization (FISH) DNA extraction 16S rRNA specific primers for the 2 clones 18S rRNA primers Real Time PCR (clam) (Loram et al., 2007; Fink, 2011) In situ hybridization (FISH) Gill of L. lacteus (logarithmic scale) Relative 16S rRNA copy numbers Relative 16S rRNA copy numbers of bacterial clones in Loripes lacteus 102 Gill a Mantle Gonad n = 10 Holm-Sidak post-hoc test, p < 0.01 101 100 10-1 10-2 10-3 a b c 10-4 * b * 10-5 Clone 1-Roscoff c * Clone 2-Roscoff Light and fluorescence micrographs of gill in Loripes lacteus (probe clone 1-Roscoff) Gill Gill Lateral zone Ciliated zone Hematoxylin-eosin staining of gill filaments Lateral zone Ciliated zone Fluorescence in situ hybridization (FISH) images of gill filaments Fluorescence micrographs of different organs in Loripes lacteus Gill Mantle Female gonad Gill Male gonad Digestive tract Methods In vivo experiments effect of starvation on endobacteria re-acquisition assay after starvation Real Time PCR Food (algae) Optimal conditions No food Food, Gill extract, Fresh sediment, Sodium sulfite 5 weeks 8 weeks 3 weeks Real Time PCR Relative 16S rRNA copy numbers of bacterial clones in Loripes lacteus submitted to 8 weeks of starvation n = 10 Holm-Sidak post-hoc test, p < 0.001 Clone 1-Roscoff No food (logarithmic scale) Relative 16S rRNA copy numbers Clone 2-Roscoff 102 a Food a a b 101 b b b c c 100 10-1 a a 10-2 a bc c 10-3 Control W1 W3 W5 bc c W8 bc c W1 W3 W5 W8 Assay of re-acquisition of symbionts in Loripes lacteus after starvation (logarithmic scale) Relative 16S rRNA copy numbers Clone 1-Roscoff 102 Clone 2-Roscoff n = 10 Holm-Sidak post-hoc test, p < 0.001 a b b 101 100 10-1 10-2 10-3 a a Control W5 No food W8 a Optimal Conditions W8 Bacteriocytes (Bc) in healthy (A) and starved (B) clams A B Bc Bc MC Transmission electron micrographs of Loripes lacteus gill sections with endosymbiotic bacteria Endobacteria Fusion Dense vacuole Dense vacuole Lytic degradation Lytic degradation Clone1-Roscoff likely to be a symbiont Initial acquisition: probably via environment (data, other lucinids, sampling period) but we can not rule out vertical transmission Regulation No symbiont multiplication inside bacteriocytes (probable control from host) Farming: degradation of bacteria Reacquisition: assay failed (Gros et al, 2012) Aposymbiotic clam / depleted clams RNAseq (transcriptome analysis) Which genes and proteins are involved in symbiont acquisition ? (recognition, phagocytosis..) How L. lacteus control the symbionts? What is the role of the bacteriocytes? Regis Lasbleiz and Dr. Thierry Comtet (Station Biologique de Roscoff, France) Dr. Sebastien Duperron (Université Pierre et Marie Curie, Paris) Dr. Jean-Marc Pons (Muséum National d'Histoire Naturelle, Paris) National Science Foundation (IOS-1050596) New York Sea Grant (R/XG-19)
© Copyright 2026 Paperzz