Definition of the Trig Functions Right Triangle Definition For this definition assume: 0˂θ˂ ! ! Formulas and Identities Unit Circle Definition For this definition θ is or 0° ˂ θ ˂ 90° Tangent and Cotangent tanθ = any angle !"#! cotθ = !"#! !"#! !"#! Reciprocal Identities cscθ = secθ = cotθ = sinθ = cosθ = tanθ = !""!#$%& !"#$%&'()& !"#!$%&' !"#$%&'()& !""!#$%& !"#!$%&' cscθ = secθ = !"#$%&'()& !""!#$%& !"#$%&'()& !"#!$%&' !"#!$%&' cotθ = !""!#$%& ! sinθ = ! = y ! cosθ = ! = x ! tanθ = ! ! cscθ = ! ! secθ = ! ! cotθ = ! Graphing and Properties Domain All of the values of θ that can be plugged into the function. sinθ, θ can be any angle cosθ, θ can be any angle Period Period is a number T, such that f (θ + T) =f (θ). If ω is a fixed number and θ is any angle we have the following periods. tanθ, θ ≠ (n+1/2)π, n = 0, ±1, ±2,… sin(ωθ) → T = cscθ, θ ≠ nπ, n = 0, ±1, ±2,… cos(ωθ) → T = secθ, θ ≠ (n+1/2)π, n = 0, ±1, ±2,… tan(ωθ) → T = !" ! !" ! ! ! csc(ωθ) → T = sec(ωθ) → T = cot(ωθ) → T = ! sinθ = !"#! ! !"#! ! !"#! cosθ = tanθ = Half Angle Formulas ! sin ! tan ! !"!! ! !"#! ! !"#! =± ! =± ! !!!"#! ! cos ! !!!"#! !!!"#! = !!!"#! !"#! ! =± !!!"#! ! !"#! = !!!"#! ! ! sin2θ = (1-cos(2θ)); cos2θ = (1+cos(2θ)) 2 tan θ = ! !!!"# (!") ! !!!"# (!") Sum and Difference Formulas Pythagorean Identities sin2θ + cos2θ = 1 sin(α ± β) = sinαcosβ±cosαsinβ cos(α ± β) = cosαcosβ∓sinαsinβ tan2θ + 1 = sec2θ tan(α ± β) = 1 + cot2θ = csc2θ Product to Sum Formulas Even/Odd Formulas sinαsinβ = [cos(α - β) - cos(α + β)] sin(-θ) = -sinθ csc(-θ) = -cscθ cosαcosβ = [cos(α - β) + cos(α + β)] cos(-θ) = cosθ sec(-θ) = secθ sinαcosβ = [sin(α + β) + sin(α - β)] tan(-θ) = -tanθ cot(-θ) = -cotθ cosαsinβ = [sin(α + β) - sin(α - β)] !"#! ± !"#! !∓!"#!!"#! ! ! ! ! ! ! ! ! Periodic Formulas Sum to Product Formulas If n is an integer sinα + sinβ = 2sin ! !" sin(θ + 2πn) = sinθ sinα - sinβ = 2cos ! ! csc(θ + 2πn) = cscθ cosα + cosβ = 2cos ! cos(θ + 2πn) = cosθ cosα - cosβ = -2sin sec(θ + 2πn) = secθ Cofunction Formulas tan(θ + πn) = tanθ sin cot(θ + πn) = cotθ csc Double Angle Formulas tan sin(2θ) = 2sinθcosθ cos(2θ) = cos2θ – sin2θ = 2cos2θ – 1 Degrees to Radians Formulas If x is an angle in degrees and θ is an angle in radians then: !" cotθ, θ ≠ nπ, n = 0, ±1, ±2,… if -1 ˂ ω ˂ 1 then shrunk horizontally Range if ω ˂ -1 or 1 ˂ ω then stretched All possible values that come out Amplitude of the function. y = Asinθ or y = Acosθ -1 ≤ sinθ ≤ 1 cscθ ≥ 1 and cscθ ≤ -1 if -1 ˂ A ˂ 1 then shrunk vertically -1 ≤ cosθ ≤ 1 secθ ≥ 1 and secθ ≤ -1 if A ˂ -1 or 1 ˂ A then stretched -∞ ˂ tanθ ˂ ∞ -∞ ˂ cotθ ˂ ∞ Distance from min to max = 2A Shifts y = sin(θ – c) (applies to all trig func.) y = sinθ + d (applies to all trig func.) shift right by c units shift up by d units y = sin(θ + c) (applies to all trig func.) y = sinθ - d (applies to all trig func.) shift left by c units shift down by d units = 1 - 2sin2θ tan(2θ) = !"#$! !!!"#! ! ! ! ! ! ! ! ! !"#° !! ! ! !! ! cos sin ! !! ! ! !! ! ! − θ = cosθ cos − θ = secθ sec − θ = cotθ cot = ! ! →θ= !! !"#° !! ! ! !! ! cos sin ! ! ! ! ! ! ! !! ! ! !! ! ! − θ = sinθ − θ = cscθ − θ = tanθ and x = !"#°! ! Compiled with Paul Dawkins’ 2005 Trig Cheat Sheet
© Copyright 2026 Paperzz