E nergy S ou rces , 2 2 :4 97 ] 5 13 , 20 00 C o p yr igh t Q 20 00 T aylor & Fr an cis 0 09 0- 83 1 2 r 0 0 $1 2 .0 0 q .00 The Drama Lignite Deposit, Northern Greece: Insights from Traditional Coal Analyses, Rock-Eval Data, and Natural Radionuclides Concentrations ANDRE AS GE O RGAKO PO ULO S De partme nt of Mine ralogy } Pe trology } School of Ge ology Aristotle U nive rsity of The ssaloniki The ssaloniki , Gree ce E conomic Ge ology In the present study the results of traditional m ethods for characterizing 25 lignite sam ples, representing a continuous sequence of the Dram a deposit, N orthern G reece, are presented. The m oisture, the v olatile m atter, and the ash contents are high, while the sulfur content rem ains at low lev els. R ock-E v al analysis was perform ed on the sam e sam ples. The Tm ax v alues obtained do not correlate with coal type and rank and are higher than those expected for lignites. T he reflectiv ity v alues are lower than 0.2%. In v alues - 0.5% R m and ) 1.5% R m , Tm a x does not correlate with R m . It is also noticed that the difference in hydrogen contents is not 2 38 2 35 related to the Tm ax v alues as would be expected. T he concentrations of U, U, 226 2 10 228 228 40 Ra, Pb, Ra, T h, and K, determ ined in sam ples D2 and D5, are sim ilar to those reported in the literature for G reek lignites. The concentrations of uranium series isotopes are am ong the higher for lignites worldwide. Keywords Dram a, Gre ece , lignite , radionuclide s, Rock-Eval pyrolysis More than 60 basins in Gre e ce forme d during Ne oge ne and Q uate rnary time s include coal de posits. The rank of the coal varie s from pe at up to the subbituminous coal stage . The most abundant type of coal in Gre e ce is lignite . Lignite de posits forme d from the Mioce ne to the Ple istoce ne in mire s of intram ontane and paralic basins , such as the basins of Ptole m ais , Florina , and Dram a in Northe rn Gre e ce and the basin of Me galopolis in Southe rn Gre e ce . The prove d lignite Received 5 March 1999; accepte d 20 May 1999. The pre sent work has be en m ade possible thanks to the Institute of Geology and Mineral Exploration (IGME ). I warmly thank J. Broussoulis and P. Yiakkoupis of IGME for providing the core samples and for fruitful discussions. The author is espe cially indebte d to FrancË ois Marquis and Je an Espitalie for the Rock-Eval pyrolysis analyse s and for their advice during the interpre tation of the re sults. I am particularly grate ful to Asst. Prof. M. Manolopoulou for the radioactivity me asure ments and for he r valuable help in the comprehension of the re sults. The assistance of Asst. Prof. T. Soldatos and Le cture r A. Koroneos is highly appre ciate d. I wish also to thank Prof. S. V alceva, University of Sofia, Bulgaria, for having assiste d me through he lpful discussions, and Asst. Prof. K. Christanis, University of P atras , Gre ece , for his critical re vie w and sugge stions for improve me nt of this article. Addre ss to corre spondence to Dr. Andre as Ge orgakopoulos , Department of Mineralogy } Pe trology } Economic Geology, School of Ge ology, Aristotle University of The ssaloniki, 540 06 The ssalonki, Gree ce . E-m ail:ageorgak@ geo.auth.gr 497 498 A . G eorgakopoulos re serve s are e stim ate d up to 6 ,750 Mt without adding the 4 ,300 Mm 3 of the Philippi pe at , about 150 km in the e ast of The ssaloniki , Northe rn Gre e ce. The e conom ically re cove rable lignite rese rve s re ach 3 ,900 Mt , approxim ate ly 58% of the total. The calorific value is ve ry low: 1400 kcal r kg in Ptole m ais ] Amynte o , only 900 kcal r kg in Me galopolis. The ash content is always high , in contrast to the sulfur conte nt which is always low. O pe ncast mining take s place in the basins of Ptole m ais , Amynteo , and Me galopolis. The annual production e xce e ds 60 Mt, of which 98% is use d for e le ctricity ge ne ration. The total installe d c ap acity of the powe r plants is 4 ,833 MW . A num ber of public ations have re ferre d to the ge ology , pe trology , mine ralogy , and ge oche m istry of Gree k pe ats and lignite s , such as those of Cam e ron e t al. (1984 ) , Christanis (1983 , 1987 , 1994 ) , Kaouras (1989 ) , Goodarzi e t al. (1990 ) , Ge ntzis e t al. (1990 , 1996 , 1997 ) , B roussoulis e t al. (1991 ) , Kalkreuth e t al. (1991 ) , Fowle r e t al. (1991 ) , Kaouras e t al. (1991 ) , Antoniadis (1992 ) , Antoniadis e t al. (1992 ) , B otis e t al. (1993 ) , V alce va & Ge orgakopoulos (1993 ) , V alce va e t al. (1995 ) , Filippidis e t al. (1996 ) , Sakorafa & Michailidis (1997 ) , and Antoniadis & Rie ber (1997 ). The pre se nt article inte grate s conve ntional analyse s of lignite s from the Dram a de posit with a pure ge oche mical analysis } Rock-E val pyrolysis } and me thods of me asureme nt of the quantity of the naturally occuring prim ordial radionuclide s which will be re le ase d , to some e xte nt, to the e nvironme nt afte r the lignite combustion. Geological Setting The 700-km 2 intram ontane basin of Dram a is a tectonic grabe n forme d since the Mioce ne by post-alpidic tectoge ne sis (Figure 1 ). Te ctonic move m e nts during the E arly-Middle Ple istoce ne se parate d the Dram a basin from the Se rre s grabe n in the we st. Pre-Ne oge ne me tamorphic and igne ous rocks of the Rhodope m assif , such as gne isse s , schists , m arble s , and granite s , constitute the m argins of the Dram a basin (Me lidonis , 1969 , 1981 ). The Ne oge ne -Q uate rnary form ations of the basin consist of clay , mud , sand , conglome rate , m arl , pe at , and lignite . The lignite de posit e xte nds all ove r the ce ntral plain are a of the Dram a basin. In the Lowe r Ple istoce ne , a lacustrine e nvironm e nt gradually de ve lope d in a large part of the basin. Lacustrine , c alcare ous gyttja was de posite d , constituting the floor of the lignite de posit and occurring in m any othe r m arginal parts of the basin. As the lake gradually shallowe d , e xte nde d pe at-forming mire s , cove red by he rbace ous ve ge tation , forme d. It was on the se pe at-form ing m ire s that the ge ne sis of Dram a lignite s starte d 1 m illion ye ars ago (V an De r W ie l & W ijmstra, 1987 ). O ve r most of the basin , clastic m ate rial from alluvial fans de posite d at diffe rent time s. The e xte nsions of the fans in the are a of the Dram a lignite de posit se parate the limno-te lm atic de posits into thre e distinct lignite se am s (A , B , and C ; se e Figure 2 ). The form ation of the Dram a lignite in a limno-te lm atic e nvironme nt is confirme d by pe trographic and palynological inve stigations (Kaouras e t al., 1991 ). M aximum growth of all three lignite se am s is found in the are a of Agia P araske vi (Figure 1 ). Se am C is not de ve lope d in the north of the village of Ne rofraktis; se am B is not de ve lope d as far north as the village of Koudounia , and se am A se e ms to e xte nd furthe r to the north. The minable lignite rese rve s are e stim ate d to e xce e d 1 ,430 Mt, with more than 1 ,060 Mt be longing to se am A , which is the thicke r and more e xte nsive one . The Dram a lignite de posit has not bee n e xploite d ye t. 499 Figure 1. Simplifie d ge ological m ap of Dram a basin (after Me lidonis, 1969 ). 500 A . G eorgakopoulos Figure 2. Ge ne ralize d profile s of the Dram a lignite de posit (after Filippidis et al., 1996 ). Samples and Analytical Methods Twe nty-five lignite sam ple s repre se nting a continuous se que nce of the Dram a de posit we re obtaine d from the DR 84 r 86 core . The coring site is loc ate d about 1.2 km in the north of Agia P araske vi village (Figure 1 ). Drilling and sampling was c arrie d out by the Institute of Ge ology and Mine ral E xploration (IGME ) , Athe ns. The Dram a L ignite Deposit, N orthern G reece 501 E ach sam ple repre sents a se am inte rval 0.2 to 1.6 m thick. Figure 2 shows the stratigraphic and are al e xte nt of the sam ple d lignite s. The sample s we re air-drie d afte r being crushe d in coarse fragm e nts. The n the sam ple s we re crushe d to pass a 1-mm sie ve . The num ber and thickne ss of e ach sam ple is give n in Table 1. Proxim ate and ultim ate an alyse s we re pe rforme d according to ISO standards. The moisture , the ash content (on a dry basis ) , the volatile m atte r (on a dry and dry, mine ral m atte r-fre e basis ) , the c arbon content (on a dry basis ) , and the total sulfur and organic sulfur content we re de term ine d. The calorific value was de te rmine d by the rmogravime tric an alysis using an isothe rm al bomb calorime te r. Polishe d se ctions of the sam ple s we re pre pare d for m icroscopic obse rvation. The lignite sam ple s we re mounte d in e poxy re sin and the n ground and polishe d according to the standard me thod (Stach e t al., 1982 ). The re fle ctance was de termine d in imme rsion oil at a monochrom atic light ( l s 546 nm ). Re fle ctance me asureme nts we re take n on e u-ulminite A (dark ). Fluore sce nce spe ctra an alysis has not bee n c arrie d out. Organic Geochemistry: The Rock-Ev al Pyrolysis Method The Rock-E val pyrolysis me thod uses a spe cial de vice in which coals or rocks with organic substance are subje cte d to sustaine d pyrolysis unde r an ine rt atmosphe re , which allows faste r study of the organic m atte r and its stage of e volution. The m ain part of the instrume nt is a sm all ove n in which a pulve rize d rock sam ple (about 100 mg ) is he ate d in a he lium atm osphe re (E spitalie e t al., 1977 ). In the c ase of coals , the recom me nde d sam ple size of 100 mg m ay ove rload the flame ioniz ation de te ctor (FID ) (Pe ters , 1986 ). In pre vious studie s 5-mg aliquots we re used (Fowle r e t al. , 1991; Syke s e t al. , 1994 ). In the prese nt study, be twe e n 10 and 16 mg of lignite we re use d. This am ount of sam ple provide s good re sults for both TO C and S 2 value s. Afte r a fe w minute s’ purge for trace s of air , the de vice he ats the sam ple progre ssive ly from 180 8 C up to 600 8 C at a constant rate of 15 8 C r min. During the assay , the hydroc arbons , which are fre e in the sample at the tim e of sam pling , are first volatilize d at a m ode rate tempe rature. The quantity of the se hydroc arbons is re corde d as a function of time by me ans of a flame ionization de tector (FID ) , giving a first pe ak (S 1 ). The se cond pe ak (S 2 ) is repre se ntative of the hydrocarbons and hydrocarbon-like compounds ge ne rate d by the rm al cracking and othe r re actions of the organic m atte r (lignite in our case ). The organic m atte r pyrolysis also ge ne rate d oxyge n-containing volatile s , i.e ., carbon dioxide (CO 2 ) and wate r. The me asure me nt of CO 2 (S 3 pe ak ) is limite d to the range 180 ] 390 8 C , in orde r to include the m ain stage of CO 2 ge ne ration from organic m atte r and to avoid othe r source s of CO 2 (de composition of carbonate s , bic arbonate s , e tc. ). From S 1 and S 2 the microproce ssor de termine s the total production inde x (TPI ) , which is the ratio S 1 r (S 1 q S 2 ). S 1 , S 2 , S 3 are c alculate d in milligram s of products (hydrocarbons , CO 2 ) pe r gram of sam ple . A fourth param e ter is the tem pe rature , Tm ax (in de gre e s Ce lsius ) at which the m aximum rate of ge ne ration of hydrocarbons occurs (top of the S 2 pe ak ). This param e ter is use d mostly for e valuation of the m aturation stage . For the purposes of this study, the O il Show Analyze r (O .S.A.) ve rsion of Rock-E val an alyze rs was used. In the O il Show Analyze r the de term ination of the total organic carbon (TO C ) is not optional , as in the case of the RO CK-E V AL II apparatus , and is re alize d in place of the an alysis of the CO 2 coming from the organic m atte r cracking (S 3 pe ak ). From the above-me ntione d param e te rs the hydroge n inde x (HI ) and the oxyge n inde x (O I ) are calculate d by me ans of S 2 , S 3 , 502 D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 D.10 D.11 D.12 D.13 D.14 D.15 D.16 D.17 D.18 D.19 D.20 D.21 D.22 D.23 D.24 D.25 Sample Table 1 C C C C C C B B B B B B A A A A A A A A A A A A A Lignite se am 45.00 62.20 63.50 64.70 68.60 75.00 102.70 106.60 109.40 113.05 113.55 117.10 134.90 144.50 148.00 150.80 156.70 159.50 163.00 166.60 174.20 183.00 186.30 187.60 200.40 De pth bene ath surface (m ) 0.90 0.80 0.80 0.60 0.90 0.70 0.50 0.80 0.70 0.50 1.05 1.00 0.80 0.50 0.50 0.70 0.30 0.50 1.00 0.50 0.30 0.30 0.30 0.50 0.50 Ply thickne ss (m ) 59.0 66.0 68.0 65.0 63.8 66.0 59.0 65.0 62.0 69.0 68.5 68.0 64.0 61.8 63.3 57.7 66.0 55.0 61.0 62.9 60.0 54.9 55.0 54.6 62.0 Moisture (% a.r.) 44.0 31.3 27.6 27.0 45.8 26.2 43.6 33.8 47.9 31.2 26.1 23.4 42.9 27.2 28.9 41.9 41.0 45.1 42.9 40.5 42.1 45.3 48.4 46.1 37.2 Ash (% d.b.) 40.0 42.0 44.9 47.2 36.2 45.1 38.0 41.8 35.8 44.6 47.0 45.7 38.2 43.6 42.0 37.3 21.5 36.2 36.4 24.0 37.8 34.3 31.1 31.4 41.1 V olatile m atte r (% d.b.) 2660 3587 3645 3600 2731 3756 2980 3476 2879 3765 3935 4120 2813 3757 3549 2927 2200 2712 3154 2070 3009 2445 2278 2615 3549 Net calorific value (d.b.) 69.1 64.3 65.8 65.3 67.4 61.4 68.2 63.2 69.6 64.3 63.8 62.1 67.3 66.0 64.7 66.9 50.2 65.4 68.9 58.1 68.7 68.0 69.6 67.8 64.9 V olatile matte r (% dmmf ) 4790 5143 5298 5100 5231 5123 5306 5550 5467 5378 5460 5541 5012 5602 5678 5248 4934 5400 5786 5142 5598 5345 5432 4986 5619 Ne t calorific value (dmmf ) 31.00 37.50 35.60 35.50 33.90 40.20 33.30 36.80 30.10 36.30 35.80 39.20 32.50 35.70 35.10 31.80 47.20 34.60 32.60 44.90 34.10 33.30 30.80 32.00 35.70 Fixed carbon (% dmmf) 4.00 2.00 2.70 2.50 1.30 1.90 2.30 2.70 2.90 3.60 3.30 3.00 4.00 3.40 1.90 3.80 2.20 2.90 5.00 1.90 4.20 3.40 3.90 3.00 4.20 Total sulfur (% d.b.) Proxim ate and ultim ate analyse s and calorific value s (kc al r kg ) for the Dram a lignite s (% dmmf is pe rce nt on a dry, m ine ral m atte r-fre e basis; % d.b. is dry basis at standard conditions; % a.r. is as-re ce ive d basis ) 1.7 0.4 0.5 0.4 0.1 0.4 0.4 0.7 1.1 0.7 0.5 0.2 0.6 0.9 0.4 1.9 0.3 0.9 1.1 0.3 1.2 1.2 0.6 0.4 1.2 V olatile sulfur (% ) The Dram a L ignite Deposit, N orthern G reece 503 and TO C content. The y are respe ctive ly e xpresse d in m illigram s of HC pe r gram of TO C and in m illigram s of CO 2 pe r gram of TO C. The oxyge n inde x and the S 3 pe ak are not include d in the O il Show Analyze r me asureme nts. The Rock-E val pyrolysis an alyse s we re pe rforme d at the Laboratory of O rganic Ge oche m istry, Institut FrancË ais du Pe trole , Rue il-M alm aison , France . Radioactiv ity Two lignite sam ple s (D2 and D5 ) we re se le cte d to me asure the quantitie s of the naturally occurring radionuclide s. The sam ple s we re homoge nize d , package d to pre clude radon e m an ation , and the n counte d for natural gam m a radiation on a low-background , high-purity Ge de te ctor , linke d to an appropriate data acquisition syste m (Manolopoulou , 1990; Manolopoulou & Pap aste fanou , 1992 ). The refore , 23 8 235 22 6 210 228 22 8 40 the conce ntrations of U, U, Ra, Pb , Ra, Th , and K (in B q r kg ) we re de termine d. The radioactivity me asure me nts we re pe rforme d at the Nucle ar Physics De partme nt , Aristotle Unive rsity of The ssaloniki. Results and Discussion Chemical Analyses Re sults from traditional proxim ate and ultim ate an alysis and calorific value s of the Dram a lignite s are re porte d in Table 1. The studie d lignite s are characte rize d by low value s of fixe d carbon (30.10 ] 47.20% ) and high ash conte nts (23.4 ] 48.4% , on a dry basis ). The as-re ceive d moisture varie s within the range 54.6 ] 69% . After combustion in the boile r , re sidual m ine ral m atte r must be disposed off in the form of ash (Unsworth e t al., 1991 ). Such disposal always has an e conom ic pe nalty, which will be se ve re for the Dram a de posit, as the ash conte nt of all Dram a sample s is quite high. The volatile m atte r , on a dry basis , range s from 21.5% to 47.2% , while on a dry, mine ral m atte r-fre e basis , it varie s be twe e n 50.2% and 69.6% . Such volatile m atte r contents are conside re d high , but are within the range of low-rank coals such as lignite s. The total sulfur conte nt varie s for se am C from 1.3% to 4.0% , whe re as the value s for the volatile sulfur are from 0.1% to 1.7% . For se am B , the total sulfur content varie s from 2.3% to 3.6% , with value s of volatile sulfur from 0.4% to 1.1% . Finally, for se am A , total sulfur value s vary from 1.9% to 5.0% , whe re as volatile sulfur value s vary from 0.3% to 1.9% . Ge ne rally, the volatile sulfur am ounts in ave rage approxim ate ly 20% of total sulfur (the diffe rence from the total sulfur re m ains in ash ). In the pre sent study the ``ne t’’ c alorific value of the sam ple s is give n. It diffe rs m ost signific antly from the ``gross’’ value due to the fact that the lignite sample s have a high moisture content. The ``ne t’ ’ calorific value is quote d to a dry and to a dry, m ine ral m atte r-fre e basis , afte r re calculation. The ave rage ne t calorific value on a dry basis for se am C is 3 ,330 kcal r kg , for se am B is 3 ,526 kcal r kg and for se am A is 2 ,852 kcal r kg. O n a dry, mine ral m atte r-fre e basis the value s are 5 ,114 , 5 ,450 , and 5 ,367 kcal r kg , respe ctive ly. Rock-Ev al Pyrolysis The re sults of Rock-E val pyrolysis are pre se nte d in Table 2. Rock-E val pyrolysis has be e n applie d to coal sample s (Te ichm ulle È r & Durand , 1983; Durand & Paratte , 1983; Be rtrand , 1984; V e rhaye n e t al., 1984; Ge orgakopoulos , 1984; Pe te rs , 1986 ; 504 D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 D.10 D.11 D.12 D.13 D.14 D.15 D.16 D.17 D.18 D.19 D.20 D.21 D.22 D.23 D.24 D.25 Sample C C C C C C B B B B B B A A A A A A A A A A A A A Lignite se am 45.00 62.20 63.50 64.70 68.60 75.00 102.70 106.60 109.40 113.05 113.55 117.10 134.90 144.50 148.00 150.80 156.70 159.50 163.00 166.60 174.20 183.00 186.30 187.60 200.40 De pth (m ) 14.8 12.2 13.5 14.1 12.0 12.6 13.1 9.4 12.9 15.9 12.2 13.4 12.3 10.2 12.1 16.9 11.2 10.3 15.3 12.5 12.0 10.2 12.0 10.2 10.8 Sample we ight (mg ) Table 2 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 R ate (8 C r min ) 0.20 0.40 0.51 0.14 0.66 0.31 0.30 0.10 0.46 0.37 0.57 0.07 0.32 0.29 0.49 0.76 0.53 0.09 0.19 0.40 0.16 0.09 0.00 0.00 0.27 S1 (mg r g of sample ) 19.05 82.86 77.85 39.14 31.50 40.07 71.29 36.59 65.19 55.72 65.90 40.07 46.74 68.52 51.57 62.54 21.51 41.94 62.41 27.92 46.00 53.33 24.58 22.25 36.11 S2 (mg r g of sample ) 420 427 420 442 442 446 422 437 436 429 419 427 431 416 436 430 440 441 441 443 446 434 438 439 428 (8 C ) Tm ax Rock-E val data for Dram a lignite sample s 113 186 172 150 136 107 164 74 193 151 154 97 127 158 154 189 149 210 193 111 143 146 112 82 115 H.I. 16.79 44.61 45.19 26.08 23.22 37.43 43.50 49.56 33.71 36.93 42.77 41.25 36.86 43.42 33.46 33.12 14.40 20.01 32.32 25.11 32.18 36.55 21.89 27.26 31.51 TO C (% ) 1.19 0.90 1.13 0.54 2.84 0.83 0.69 0.20 1.36 1.00 1.33 0.17 0.87 0.67 1.46 2.29 3.68 0.45 0.59 1.59 0.50 0.25 0.00 0.00 0.86 S1 r TO C 15.19 37.70 38.69 22.82 20.55 34.08 37.56 46.51 28.26 32.27 37.25 37.92 32.95 37.71 29.14 27.87 12.57 16.52 27.12 22.76 28.35 32.12 19.85 25.41 28.49 RC (% ) 0.90 0.85 0.86 0.87 0.89 0.91 0.86 0.94 0.84 0.87 0.87 0.92 0.89 0.87 0.87 0.84 0.87 0.83 0.84 0.91 0.88 0.88 0.91 0.93 0.90 RC r TO C The Dram a L ignite Deposit, N orthern G reece 505 Kalkreuth & Macaule y, 1987; B oudou e t al. , 1990; Fowle r e t al. , 1991 ; M arquis e t al. , 1992; Suggate & B oudou , 1993; Syke s e t al. , 1994; B ostick & D aws , 1994 ; Ne wm an e t al., 1997 ) , and it was e vide nt that a ve ry cautious interpretation of the re sults should be m ade . Typically, the application of pyrolysis e xpe rim e nts on diffe re nt coal sam ple s has be e n unde rtake n to confirm the ide a that coals m ay provide a source of oil and gas accum ulations. The most volatile compounds (gue st bitume n ) appe ar in the first P 1 pe ak. The are a S 1 of this pe ak is ve ry low for all Dram a sam ple s. Sim ilar low value s have alre ady be e n reporte d for a large coal se rie s (Te ichmulle È r & Durand , 1983 ). As Te ichmulle È r and Durand (1983 ) , B ostick and Daws (1994 ) , and othe rs have also noted , S 1 is sm all in coals and doe s not incre ase with incre asing rank. Furthe rmore , pe ats and lignite s have much highe r S 1 value s than bituminous coals (Sugg ate & B oudou , 1993 ). The hydrocarbon-like products and re late d volatile bitume ns , forme d by the rm al cle avage from the organic m atte r , appe ar in the se cond pe ak P 2 . For the uppe r se am C , the value s of S 2 (in mg HC r g ) vary from 19.05 to 82.86 . For se am B , the value s of S 2 vary from 36.59 to 71.29 , whe re as for the lowe r se am A , the value s vary be twe e n 21.51 and 68.52 . The se S 2 value s indic ate that only m inor hydrocarbon e xpulsion occurs from the Dram a lignite s. The Tmax value s for all sam ple s vary be twe e n 416 and 446 8 C. Some sam ple s show high T max value s , although all sam ple s are obtaine d from only a 160-m-de e p we ll and are of the sam e low rank. In ge ne ral , for te rre strial organic m atte r in the e arly stage s of e volution the Tmax value s vary be twe e n 395 and 420 8 C. It m ust also be notice d that the diffe rence s in the mine ral m atte r content of the sam ple s do not influe nce the T max value s. For the sam ple s showing high Tm ax value , the latte r doe s not corre late with both coal type and rank. A ccording to Ne wm an e t al. (1997 ) , any re lationship be twe e n coal type and Tmax is e rratic at the lowe st coal rank (high-volatile bituminous B ) the y have inve stigate d. The re fore , it c an be conclude d that the relationship betwe e n Tmax and coal type is also e rratic for lignite s. In all sam ple s the refle ctivity value s are lowe r than 0.2% (Table 3 ). B e twe e n 0.5% R m (Tm ax f 425 8 C ) and 1.5% R m (Tm ax f 475 8 C ) , the corre lation be twe e n R m and Tm ax is fairly line ar. In value s - 0.5% R m and ) 1.5% R m , Tm ax incre ase s more quickly than R m (Te ichmulle È r & Durand , 1983 ). Som e scatte ring is also notice able : this is not only due to ince rtitude s of me asurem e nts , but also due to diffe re nt significance s of R m and Tm ax : R m is me asured on huminite (e u-ulminite A ) , while T max is me asured on whole coal (huminite q liptinite q ine rtinite ). In a pre vious work , Kaouras e t al. (1991 ) pre se nte d a pe trographic and palynological study, conducte d on a set of sam ple s from one borehole of the Dram a lignite de posit. The authors e stablishe d that the m ace rals of the huminite group in 9 sam ple s vary from 61.49 % to 81.72% , those of the liptinite group from 8.42% to 31.76 % , and those of the ine rtinite group from 6.01% to 24.72 % . The se value s point out that T max cannot corre late pe rfe ctly with R m . In othe r words , Tm ax is influe nce d by the pe trographic composition , beside s the rank , the latte r de te rmine d on the basis of huminite refle ctance . The hydroge n inde x value s vary from 107 to 186 for se am C , from 74 to 193 for se am B , and from 82 to 210 for se am A. It is notice d that the diffe rence s in hydroge n conte nts are not re late d to the Tm ax value s as would be e xpe cte d. Apart from that , the value s of Tmax and those of the de pth are not relate d to e ach othe r. The O il Show Analyze r de vice de te rmine s total organic carbon (TO C ) in we ight pe rce nt of sam ple , by summing up the pyrolyze d organic carbon (de duced from the total am ount of hydrocarbons S 1 q S 2 ) with the re sidual organic carbon (RC ) obtaine d afte r oxidation. In Figure 3 , the 506 A . G eorgakopoulos Table 3 Me an random re fle ctance s (% R m , oil ) me asured on e u-ulminite s A of the Dram a lignite sam ple s R andom re fle ctance in oil (% ) E u-ulm inite A Se am De pth (m ) D.1 D.2 D.3 D.4 D.5 D.6 C C C C C C 45.00 62.20 63.50 64.70 68.60 75.00 0.20 0.12 0.13 0.13 0.17 0.19 " " " " " " 0 ,02 0 ,03 0 ,05 0 ,03 0 ,05 0 ,03 D.7 D.8 D.9 D.10 D.11 D.12 B B B B B B 102.70 106.60 109.40 113.05 113.55 117.10 0.20 0.15 0.17 0.11 0.13 0.14 " " " " " " 0 ,03 0 ,02 0 ,03 0 ,02 0 ,03 0 ,03 D.13 D.14 D.15 D.16 D.17 D.18 D.19 D.20 D.21 D.22 D.23 D.24 D.25 A A A A A A A A A A A A A 134.90 144.50 148.00 150.80 156.70 159.50 163.00 166.60 174.20 183.00 186.30 187.60 200.40 0.14 0.12 0.17 0.13 0.17 0.17 0.12 0.14 0.14 0.14 0.17 0.17 0.18 " " " " " " " " " " " " " 0 ,03 0 ,01 0 ,02 0 ,02 0 ,02 0 ,02 0 ,01 0 ,02 0 ,02 0 ,03 0 ,03 0 ,02 0 ,03 Sam ple Rock-E val TO C value s are relate d to fixe d carbon as de term ine d by proxim ate an alysis for the Dram a lignite sam ple s. For a part of the sam ple s the value s are almost the sam e , but for the re st the re is a signific ant diffe rence . It is difficult to provide a satisfactory e xplan ation about this phe nome non. The total organic c arbon can be divide d into two fractions: the first, conne cte d to the hydrocarbons that are re le ase d during the cracking of the coal , is found in the pyrolyz ate . The se cond fraction is the re sidual c arbon (RC ) or ``de ad carbon ,’’ which constitute s the ine rt carbon that re acts only in oxidation. The se two carbon forms we re studie d by Gransch and E ism a (1970 ) , who originally proposed the ``carbon ratio’ ’ (C R r C T ). The re sidual carbon C R (or RC ) is re late d to the abundance of polyarom atic nucle i. The volatile fraction C T minus C R (C T be ing the total organic carbon ) is re late d to the abundance of aliphatic chains and oxyge n-containing functional groups which are lost during pyrolysis. For the same type of organic m atte r the ratio C R r C T incre ase s with the de gre e of m aturation , re aching approxim ate ly the 507 Figure 3. Relationship betwee n Rock-Eval TO C value s with fixed carbon content as dete rmined by proxim ate analysis for the Dram a lignite . 508 A . G eorgakopoulos value 1 in the case of graphite . In addition , high C R r C T value s m ay be obtaine d from type III organic m atte r or coals , e ve n at low stage s of m aturation. In the Dram a sam ple s , the value s of the carbon ratio vary from 0.83 to 0.94. Inde pe nde nt of the me thodology that is used , the diffe re nce be twe e n TO C and C R corre sponds to the c arbon that is libe rate d during pyrolysis , terme d C p . The re fore , the re lation: C T y C R s C P is form e d. During pyrolysis this C P is libe rate d in the form of hydrocarbons , CO , and CO 2 . The quantitie s of CO are ve ry low and can be ignored (Souron e t al., 1975 ). The quantity of carbon that is relate d to the CO 2 libe rate d during pyrolysis is , of course , large r than the quantity of carbon that is re late d to the CO , but still rem ains at ve ry low le ve ls. In the case of re ce nt se dime nts originating from highe r plants , the quantity of carbon re late d to the CO 2 constitute s just 8% of the total organic c arbon. In the case of lignite s (as in the Dram a c ase ) , this pe rce ntage falls to 4% , whe re as for type III rock sam ple s in the be ginning of the m ature stage it is 2% (Souron e t al. , 1975 ). From the above it is cle ar that the gre ate st part of the volatile organic c arbon (C P ) is re late d to the hydrocarbons libe rate d during pyrolysis cracking and is repre se nte d by the S 2 pe ak , le ading to an e xce lle nt corre lation betwe e n S 2 are a and TO C y RC diffe rence . Natural Radionuclides 238 23 5 22 6 21 0 228 228 T able 4 pre sents the conce ntrations of U, U, Ra, Pb , R a , Th , and 40 K (in Bq r kg ) , de te rmine d in sam ple s D2 and D5 , both obtaine d from se am C. Conce ntrations of U and Th are also calculate d in ppm , while the conce ntration of K is calculate d in we ight pe rce nt. The re sults show a similar distribution of the naturally ocurring radionuclide s be twe e n the two sample s. It se e m s that radioactive 238 22 6 22 6 210 e quilibrium e xists betwe e n U and R a and also be twe e n R a and Pb. This fact me ans that the rate of form ation of the radioactive daughter product is e qual to the rate of de cay. According to Cole s e t al. (1978 ) , secular e quilibrium doe s e xist 23 8 235 226 Table 4 21 0 228 228 40 Conce ntrations of U , U , R a, Pb , R a , Th , and K for sam ple s D2 and D5 obtaine d from the uppe r se am C of the Dram a lignite de posit D2 B q r kg 238 U U 226 Ra 210 Pb 228 Ra 228 Th 40 K U (ppm ) Th (ppm ) K (% ) 235 121.0 6.5 125.3 160.0 16.9 14.5 106.0 9.80 3.90 0.34 " 1 s : standard deviation. D5 " 1s 14.0 2.1 2.6 15.0 1.2 1.3 6.8 12.0% 5.5% 6.4% Bq r kg 95.0 4.8 108.4 118.0 20.7 19.7 103.0 7.70 5.00 0.33 " 1s 12.0 0.9 1.3 12.0 0.7 0.8 3.4 12.0% 2.6% 3.3% The Dram a L ignite Deposit, N orthern G reece 509 be twe e n all the nuclide s of the uranium serie s chain in the coals. This radioactive 238 226 238 e quilibrium doe s not e xist be twe e n U and R a in the Ptole m ais lignite s ( U : 226 22 6 210 22 6 210 R a s 1.7 " 0.4 ) , whe re as it doe s e xist be twe e n R a and Pb ( R a: Pb s 1.0 " 0.2 ) (M anolopoulou , 1990; Manolopoulou & Pap aste fanou , 1992 ). The me an 238 235 isotopic ratio U: U for the two sam ple s inve stigate d is 19.4 " 3.7 (B q ) and is in fairly good agre e me nt with the natural one , 21.44 " 0.02 (Bq ). In ge ne ral , the conce ntrations of natural radionuclide s in type s of coal are le ss than those in the 23 8 e arth’s crust. The ave rage activity conce ntrations in coal are 20 Bq r kg of U , 20 23 2 40 238 23 2 B q r kg of Th , and 50 B q r kg of K, and all the de cay products of U and Th are in radioactive e quilibrium with the ir pre cursors (UNSCE AR , 1982 ). Lignite radioactivity has be e n ve ry scarce ly cove re d by the international bibliography. The re fore a com parison is unde rtake n betwe e n the re sults of the prese nt study and those re porte d by seve ral authors conce rning highe r-rank coals. A ve ry compre he nsive study by Ge ntzis and Goodarzi (1997 ) reports on the concentration of radionuclide s in subbituminous coals use d e xclusive ly for powe r ge ne ration in Albe rta , C an ada. The authors compare the radioactivity me asure d in coals from the Highvale Mine and the W hite wood Mine with the sam e conce ntrations in othe r C an adian fee d coals (E vans e t al., 1985 ) , in Australian coals , and in coals from the Unite d State s and the Unite d Kingdom (Sm ith , 1987 ). The y have found that the 23 2 activity of Th range s from 10 to 40 B q r kg , whe re as the range in Australian coals is from 11 to 69 , in the U.K. coals from 7 to 19 , and in the U.S. coals from 4 to 21 22 6 B q r kg. For R a the activity range s from 10 to 40 B q r kg , whe re as the range in Australian coals is from 19 to 24 , in the U .K. coals from 8 to 22 , and in the U .S. 21 0 coals from 9 to 59 B q r kg. For Pb the authors have found an activity range from 10 to 40 Bq r kg , ve ry sim ilar to those of Australian coals (16 ] 28 ) and lowe r than those of U.S. coals (4 ] 52 ). From all the above value s it is cle ar that , in the case of Dram a, the radium-226 and uranium-238 conce ntrations are within the highe r range for world coals. Uranium and its daughter nuclide s are associate d with the organic m ate rial of lignite s (coal m atrix ) , while thorium and its daughte r nuclide s as we ll as potassium are associate d with inorganic m ate rials (ash m atrix). The 22 6 228 diffe re nt be havior be twe e n the two isotope s of radium , R a and R a in the 22 6 studie d lignite s , is probably due to the fact that R a has highe r m obility in 228 23 2 the coal m atrix than R a , which is associate d (as its pare nt Th ) with alum inosil23 8 icate s. R adium-226 (and its pre cursor U ) has bimodal be havior e ithe r in the volatile form of uraninite or in the silicate form of coffinite wU (SiO 4 )1 y X (O H )4 X x (Cole s e t al., 1978; Manolopoulou & Pap aste fanou , 1992 ). O bviously, the sm all numbe r (2 ) of lignite sam ple s which we re inve stigate d for the conce ntrations of naturally occurring radionuclide s doe s not pe rmit significant conclusions to be m ade , but similar conce ntrations are also re fe rre d for the Ptole m ais lignite s , in which U has pre dominantly an organic mode of occurre nce (Manolopoulou , 1990 ). Conclusion The prese nt study was carrie d out to de termine the quality param e te rs which re fle ct the rm al value and any de le terious te nde ncie s it m ay have for proce ss e fficie ncy and r or the e nvironm e nt. Traditional an alyse s such as proxim ate , ultim ate , and c alorific value do not show substantial variability am ong the thre e lignite se am s of the Dram a de posit. The moisture , the volatile m atte r , and the ash contents are always high , while the sulfur conte nt of Dram a lignite s always re m ains 510 A . G eorgakopoulos at low le ve ls. A spe cific te chnique involving a pyrolysis proce ss (Rock-E val pyrolysis ) has be e n used toge the r with conve ntional me thods. Rock-E val analysis was not de signe d for coal characte rization , and has not be e n e valuate d rigorously for re producibility in this regard. This me thod has be e n applie d only a ve ry few time s in lignite studie s , the re fore , the se results m ay be ve ry inte resting. The Tmax of re le ase of gase ous spe cie s unde r ine rt atmosphe re (hydrocarbons , H 2 ) or unde r oxidizing atmosphe re (H 2 O , CO 2 , SO 2 , . . . ) allow a wide ning of the rank dom ain to be asse sse d , com pare d to the Tmax of the Rock-E val pyrolysis , which conce rns only the dom ain of 0.5 to 1.5% R m . The S 1 as we ll as S 2 value s de te rm ine d from the Rock-E val pyrolysis for the set of Dram a sam ple s de monstrate that: 1. S 1 and S 2 corre late with coal type and rank , while Tm ax doe s not. 2. Rock-E val S 2 indicate s only minor hydrocarbon e xpulsion from Dram a lignite s. 3. Comparison of the Rock-E val an alysis data (TO C ) with those of the proxim ate analysis (fixe d carbon ) re ve als that som e time s the Rock-E val te chnique unde restim ate s and som e time s it ove restim ate s the carbon content. Inte rpretation of the results of the Rock-E val an alysis is important for the e valuation of the pe trole um-source potential of coals , but is of no value for lignite s since the y have no pe trole um-source pote ntial. Howe ve r , this an alytical me thod , although unconve ntional for lignite s , com bine d with some othe r , also unconve ntional an alytical me thods , is valuable in relation to coal utiliz ation (in hydrolique faction , gasification , combustion , e tc. ). The concentrations of the naturally occurring radionuclide s , which to some e xte nt will be re le ase d to the e nvironme nt afte r the combustion of the lignite , are am ong the highe r for lignite s worldwide . A s Cole s e t al. (1978 ) have re porte d , a 238 part of U which is associate d with silicate s or which is mine ralize d as coffinite in 23 8 the lignite (coal m atrix ) re m ains with the bottom ash , whe re as the U part associate d with the uraninite (UO 2 ) in the coal m atrix forms volatile compounds , such as UO 3 . R a-226 also form s volatile com pounds such as R a (O H ) 2 and late r conde nse s out on the fine r fly ash particle s (fly ash m atrix ). References È r das Lignitvorkomme n von Lava (Kozani ): Struktur, B au und Antoniadis , P. A. 1992. Ube P alaogeographie nach Se dime ntologischen Aspekte n. Mining- Metall. A nn. (Athe ns ) È 2:87 ] 106. Antoniadis , P. A., G. Kaouras, P. A. Khanaqa, and W. Riegel. 1992. Pe trographische Unte rsuchungen an de n ne ogenen Braunkohle n im Becke n von Chom atero-Koroni, SW-Pe loponnes, Grieche nland. A cta Palaeobot. 32 (1 ):27 ] 37. Antoniadis , P. A., and E . Rie be r. 1997. Z u Fossilinhalt, Kohle ge ne se und Stratigraphie des Kohlebe ckens von Lava in Nord Grieche nland. Acta Palaeobot. 37 (1 ):61 ] 80. Bertrand , P. 1984. Ge ochemical and petrographic characte rization of humic coals considered as possible oil source-rocks. Organic G eochem . 6:481 ] 488. Bostick, N. H., and T. A. D aws. 1994. Relationships be twe en data from Rock - E v al pyrolysis and proxim ate , ultim ate , petrographic, and physical analyse s of 142 dive rse US coal sample s. Organic G eochem . 21 (1 ):35 ] 49. The Dram a L ignite Deposit, N orthern G reece 511 Botis, A., A. Bouzinos, and K. Christanis. 1993. The ge ology and palae oe cology of the Kalodiki pe atland, we stern Gre ece. Int . Peat J. 5:25 ] 34. Boudou, J. P., J. Espitalie , and F. Marquis. 1990. Continuous gas dete ction during he ating of coal and keroge n, in H. Charcosse t (ed.) , A d v anced m ethodologies in coal characterization , pp. 285 ] 310 , Coal Scie nce and Te chnology 15 , Amste rdam , The Ne therlands: Elsevie r. Broussoulis , J., P. Yiakkoupis, E. Arapogiannis , and J. Anastasiadis. 1991. Dram a lignite de posit: Ge ology-e xploration-resource s. (In Greek with English abstract ). Internal re port, Institute of Ge ology and Mine ral E xploration , Athe ns. C ame ron , A. R., W. D. Kalkreuth., and C. Koukouzas. 1984. The petrology of Gre ek brown coals. Int. J. Coal G eol. 4:173 ] 207. Christanis, K. 1983. Ein Torf e rzahlt die Ge schichte se ine s Moores. Telm a 13:19 ] 32. È Christanis, K. 1987. Philippi r Gre ece : A pe at de posit awaiting deve lopment. Int . Peat J. 2:45 ] 54. Christanis, K. 1994. The genesis of the Nissi pe atland (NW Gree ce ) , as an example of pe at and lignite de posit form ation in Gree ce . Int . J. Coal G eol. 26:63 ] 77. Cole s, D. G., R. C. R againi, and J. M. O ndov. 1978. Behaviour of natural radionuclide s in we ste rn coal-fire d power plants. E n v iron . Sci. Technol. 12:442 ] 446. Durand , B., and M. P aratte . 1983. O il potential of coals , in J. Brooks (ed. ) , Petroleum geochem istry and exploration of E urope, pp. 285 ] 292. O xford, UK: Blackwell Scientific. Espitalie , J., J. L. Laporte , M. Made c, F. Marquis, P. Le plat, J. P aule t, and A. Boute feu. 1977. Me thode rapide de caracte risation des roche s meÁ res , de leur potentie l petrolier et  de leur de gre d’e volution. Rev . Inst . FrancË ais du Petrole 32:23 ] 42.  Evans , J. C., K. H. Abel, K. B. O lse n, E. A. Le pe l, R. W. Sande rs , C. L. Wilke rson, D. J. H ayes , and N. F. Mange lson. 1985. Characte rization of trace constituents at C anadian coal-fired power plants: Ph ase 1 } Final report, Contract No. 001G194. Montre al, Q uebe c, Canada: C anadian Ele ctrical Association. Filippidis , A., A. Georgakopoulos , A. Kassoli-Fournaraki , P. Misae lides , P. Yiakkoupis, and J. Broussoulis. 1996. Trace e le ment contents of thre e lignite se ams from the ce ntral part of the Dram a lignite deposit, Macedonia, Gree ce . Int . J. Coal G eol. 29:219 ] 234. Fowle r, M. G., T. Ge ntzis , F. Goodarzi, and A. E. Foscolos. 1991. The petroleum potential of some Te rtiary lignite s from northern Gree ce as dete rmined using pyrolysis and organic pe trological technique s. Organic G eochem . 17 (6 ):805 ] 826. Gentzis, T., and F. Goodarzi. 1997. Selected eleme nts and radionuclides in the rm al coals from Albe rta, C anada. Energy Sources 19 (3 ) :259 ] 269. Gentzis, T., F. Goodarzi, and Y. Broussoulis. 1990. Pe trographic characte ristics and depositional e nvironment of Greek lignites , II: Ioannina B asin , we ste rn Gree ce . J. Coal Quality 9:53 ] 61. Gentzis, T., F. Goodarzi , and A. E. Foscolos. 1997. Geochemistry and mineralogy of Greek lignites from the Ioannina B asin. Energy Sources 19:111 ] 128. Gentzis, T., F. Goodarzi , C. N. Koukouzas , and A. E. Foscolos. 1996. Pe trology, mineralogy and ge oche mistry of lignites from Cre te , Gre ece. Int. J. Coal G eol. 30:131 ] 150. Georgakopoulos, A. 1984. Contribution a l’ analyse de s sediments re cents par la pyrolyse de type Rock - E v al. Ph.D. Thesis, Institut FrancË ais du Pe trole , Ref. I.F.P. 32 457. Goodarzi, F., T. Gentzis , and P. Yiakkoupis. 1990. Pe trographic characte ristics and depositional e nvironment of Gre ek lignites , I: Dram a basin, Northe rn Gre ece. J. Coal Quality 9 (1 ):26 ] 37. Gransch, J. A., and E. Eisma. 1970. Characte rization of the insoluble organic m atter of se dime nts by pyrolysis, in G. D. Hobson , and G. C. Spee rs (eds.) , A dv ances in organic geochem istry (1966 ) , pp. 407 ] 426. O xford, UK: Pe rgamon Pre ss. Kalkreuth, W. D., T. Kotis, C. Papanikolaou, and P. Kokkinakis. 1991. The geology and coal pe trology of a Mioce ne lignite profile at Me liadi Mine , Katerini, Gre ece. Int . J. Coal G eol. 17:51 ] 67. 512 A . G eorgakopoulos Kalkreuth, W. D., and G. Macaule y. 1987. O rganic pe trology and ge oche mical (Rock-Eval) studies on oil shale s and coals from the Pictou and Antigonish are as, Nova Scotia, C anada. Bull. Can . Petroleum G eol. 35 (3 ) :263 ] 295. Kaouras , G. 1989. Kohlepetrographische , palynologische und se dimentologische Untersuchunge n der Pliozane È n Braunkohle von Kariochori be i Ptolem ais r NW-Grie chenland. Ph.D. thesis, Universitat n. È Gottinge È Kaouras , G., P. Antoniadis, P. Blickwe de , and W. Rie ge l. 1991. Pe trographische und palynologische Untersuchungen an Braunkohlen im Be cken von Dram a, O stmakedonien , Grie chenland. N eues Jahrbuch fur 3:145 ] 16. È G eologie und Palaontologie È Manolopoulou , M. 1990. A radioecological study of a coal power plant environme nt. Ph.D. The sis , Aristotle University of Thessaloniki. Manolopoulou , M., and C. Papaste fanou. 1992. Behavior of natural radionuclides in lignites and fly Ashe s. J. E nv iron . Radioactiv ity 16:261 ] 271. Marquis, F., E. Lafargue , and J. Espitalie . 1992. The influe nce of m aceral composition and m aturity on the pe troleum-ge nerating pote ntial of coals, in A. M. Spence r (e d. ) , G eneration , accum ulation and production of Europe’ s hydrocarbons II , pp. 239 ] 247. Spe cial Publication of the E urope an Association of Pe troleum Geoscientists No. 2. Berlin ] He idelbe rg: Springe r-V e rlag. Me lidonis, N. 1969. The pe at-lignite de posit of Philippi (Macedonia, Gree ce ). G eol. G eophys. Res. XIII (3 ):87 ] 250 (in Gre ek ). Me lidonis, N. 1981. Be itrag zur Ke nntnis de r Torflage rstatte von Philippi (O stm azedonie n ). È Telm a 11:41 ] 63. Ne wm an , J., L. C. Price , and J. H. Johnston. 1997. Hydrocarbon source pote ntial and m aturation in Eoce ne New Z e aland vitrinite-rich coals. Insights from traditional coal analyses , and Rock - E v al and biom arker studie s. J. Petroleum G eol. 20 (2 ):137 ] 163. Pe ters, K. E. 1986. Guide lines for evaluating pe trole um source rocks using programme d pyrolysis. A A PG Bull. 70:318 ] 329. Sakorafa, V ., and K. Michailidis. 1997. The ge ology and coal pe trology of a Ple istocene lignite profile at Hore mi mine , Me galopolis B asin, Pe loponne se (southern Gre ece ). Int . J. Coal G eol. 33:73 ] 91. Smith , I. M. 1987. Trace ele ments from coal combustion: Emissions. Report CR r 01 , Inte rnational Ene rgy Age ncy, London . Souron, C., R. Boulet, and J. Espitalie . 1975. Etude par spectrometrie de m asse de la  de composition thermique de roche s se dime ntaires contenant de la matieÁ re organique de de ux type s diffe re nts et comparaison ave c le s ke rogene Á s correspondants. Rev . Inst. , 797 ] 820. FrancË ais du Petrole  Stach, E., M. Th. Mackowsky, M. Te ichmuller , G. H. Taylor , D. Chandra, and R. Te ichmulle È È r. 1982. T extbook of coal petrology, 3d ed. Berlin ] Stuttgart: Gebruder Borntrae ger. È Suggate , R. P., and J. P. Boudou. 1993. Coal rank and type variation in Rock - E v al asse ssme nt of New Z e aland coals. J. Petroleum G eol. 16:73 ] 88. Syke s, R., M. G. Fowler , and K. C. Pratt. 1994. A plant tissue origin for ulminite s A and B in ² Saskatchewan lignites and implications for Ro . E nergy & Fuels 8:1402 ] 1416. Te ichmuller, M., and B. Durand. 1983. Fluorescence microscopical rank studies on liptinites È and vitrinite s in pe at and coals, and comparison with re sults of the Rock-Eval pyrolysis. Int. J. Coal G eol. 2:197 ] 230. UNSCEAR. 1982. Ionizing radiation: Sources and biological e ffe cts. United Nations, New York: Unite d Nations Scie ntific Committee on the Effects of Atomic R adiation. Unsworth , J. F., D. J. Barratt, and P. T. Robe rts. 1991. Coal quality and com bustion perform ance: A n international perspectiv e , Coal Science and Te chnology 19. Amsterdam , The Ne the rlands: Elsevier. V alce va, S., and A. Georgakopoulos. 1993. Pe trological characte ristics of the Ptolem ais lignite , Gre ece. A preliminary study, in P. Fe noll H ach-Ali , J. Torre s-Ruiz, and F. Ge rvilla (e ds.) , Current research in geology applied to ore deposits, Procee dings of the se cond biennial SGA mee ting, Granada, Spain , pp. 779 ] 782. The Dram a L ignite Deposit, N orthern G reece 513 V alce va, S., A. Georgakopoulos, and K. Markova. 1995. The relationship be twe en the pe trographic composition and some chemical propertie s for the Ptolem ais basin lignite , (e ds.) , Proceedings of the Eighth Gree ce , in J. A. Pajares , and J. M. D. Tascon  International Conference on Coal Science , Coal Scie nce and Te chnology 24, pp. 259 ] 262. Amste rdam , The Ne the rlands: Elsevier. V an De r Wiel, A. M., and T. A. Wijmstra. 1987. Palynology of the lower part (78 ] 120 m ) of the core Te nagi Philippon , II, Middle Ple istocene of Mace donia, Gree ce . Rev . Palaeobot. Palynol. 52:73 ] 88. V erhayen , T. V ., R. B. Johns , and J. Espitalie . 1984. An e valuation of Rock-E val pyrolysis for the study of Australian coals including the ir ke rogen and humic acid fractions. G eochim . Cosm ochim . Acta 48:63 ] 70.
© Copyright 2026 Paperzz