CEGEP CHAMPLAIN - ST. LAWRENCE 201-NYA-05: Differential Calculus Patrice Camiré Logarithmic Differentiation 1. Find the derivative of y using logarithmic differentiation. In each case, mention if logarithmic differentiation is necessary or simply convenient. (a) y = xx x 2 (k) y = xe (b) y = xsin(3x) (c) y = [tan(2x)]x 2 (d) y = (2x + 1)3x x+1 x (e) y = x−1 (f) y = xln(x) (g) y = sin(2x) cos(4x) x x (h) y = xx √ 2x + 1(x3 + 5)2 (i) y = e x2 (6x − 1)5 (2x + 3)4 (j) y = (x + 1)4 (8x + 1)3 (l) y = [sin(x)]cos(x) √ √ 6x + 1 3 3x − 1 √ (m) y = 5 20x + 7 √ 6 2x − 1 (n) y = √ 3 2 x 3x2 + 1 (x2 + 3)8 (3x + 2)4 (x4 + 1)2 (5x − 1)3 s ex3 (x2 + 1)9 (p) y = (2x − 1)4 (3x − 5)3 (o) y = (q) y = [sec(2x)]sec(2x) (r) y = xcot(3x) (s) y = x2 csc(x 2) dy 2. Find using implicit differentiation and logarithmic differentiation. Make sure to understand dx why logarithmic differentiation is necessary in each case. (a) y y = xx (e) xx = y 2 sin(x) (b) xy = x3 y (f) y x = (c) xy = y x (d) xy = x2 + x + 1 2 x y (g) (xy)x = x2 (h) y sin(x) = x cos(y) Answers 1. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) dy 2 = x(2 ln(x) + 1)xx dx dy sin(3x) xsin(3x) = 3 cos(3x) ln(x) + dx x dy x sec2 (2x) 2 [tan(2x)]x = 2x ln(tan(2x)) + dx tan(2x) dy 2x (2x + 1)3x = 3 ln(2x + 1) + dx 2x + 1 dy x+1 2x x+1 x = ln − 2 dx x−1 x −1 x−1 dy = 2 ln(x)xln(x)−1 dx dy 1 sin(2x) cos(4x) = 2 cot(2x) − 4 tan(4x) − dx x x dy 1 x = ln(x) + 1 + xx ln(x)xx dx x ln(x) √ dy 2x + 1(x3 + 5)2 1 6x2 = + 3 − 2x dx 2x + 1 x + 5 e x2 dy 15 4 2 12 (6x − 1)5 (2x + 3)4 =2 + − − dx 6x − 1 2x + 3 x + 1 8x + 1 (x + 1)4 (8x + 1)3 dy x = ex (x ln(x) + 1)xe −1 dx 2 dy cos (x) = − sin(x) ln(sin(x)) [sin(x)]cos(x) dx sin(x) √ √ dy 3 1 4 6x + 1 3 3x − 1 √ = + − 5 dx 6x + 1 3x − 1 20x + 7 20x + 7 √ 6 dy 1 2 2x 2x − 1 √ = − − 2 dx 3(2x − 1) x 3x + 1 x2 3 3x2 + 1 2 dy 16x 12 8x3 15 (x + 3)8 (3x + 2)4 = + − − dx x2 + 3 3x + 2 x4 + 1 5x − 1 (x4 + 1)2 (5x − 1)3 s 1 18x 8 9 ex3 (x2 + 1)9 dy = − − 3x2 + 2 dx 2 x + 1 2x − 1 3x − 5 (2x − 1)4 (3x − 5)3 dy = 2 tan(2x)(1 + ln(sec(2x)))[sec(2x)]1+sec(2x) dx necessary necessary necessary necessary necessary necessary convenient necessary convenient convenient necessary necessary convenient convenient convenient convenient necessary cot(3x) 2 − 3 csc (3x) ln(x) xcot(3x) x dy 1 2 2 2 (s) = 2 csc(x ) − 2x cot(x ) ln(x) x2 csc(x ) dx x dy (r) = dx 2. (a) (b) ln(x) + 1 dy = dx ln(y) + 1 dy y(3 − y) = dx x(y ln(x) − 1) dy y(x ln(y) − y) = dx x(y ln(x) − x) 1 dy 2x + 1 y (d) = − 2 dx x + x + 1 x ln(x) (c) (e) necessary necessary dy y = (1 + ln(x) − cot(x)) dx 2 dy y(1 − 2x2 ln(y)) = dx x(x2 + 1) dy y 2 (g) = − ln(xy) − 1 dx x x (f) (h) dy y(1 − x cos(x) ln(y)) = dx x(sin(x) + y tan(y))
© Copyright 2026 Paperzz