STATION #1 – Vertex Form Use the functions below to answer the

STATION #1 – Vertex Form
Usethefunctionsbelowtoanswertheproblems.
A. 𝑓 (π‘₯ ) = (π‘₯ + 4)2 βˆ’ 4
B. 𝑦 = 10 βˆ’ 2(π‘₯ βˆ’ 2)2 C. 𝑓 (π‘₯ ) = π‘₯ 2 βˆ’ 4
D. 𝑦 = (π‘₯ βˆ’ 1)2 1. Identify the vertex, axis of symmetry, min/max and value,
and domain & range.
2. Describe how the following functions were translated
from the function 𝑓 (π‘₯ ) = π‘₯ 2
3. Convert the functions to standard form.
STATION #2 – STANDARD FORM
Use the following functions to answer the questions.
A. 𝑦 = π‘₯ 2 + 6π‘₯ + 9
B. 𝑦 = βˆ’π‘₯ 2 βˆ’ 5π‘₯ + 6
1. Identify the vertex, axis of symmetry, y-intercept, min or
max, and domain and range of the following functions.
2. Convert each function to intercept form.
3. Convert each function to vertex form. (complete the
square for A)
STATION #3 – Solve by Factoring
Solve each function by factoring. 1. π‘₯ 2 + 7π‘₯ + 10=0
2. 𝑓 π‘₯ = βˆ’π‘₯ 2 + 11π‘₯ βˆ’ 18
3. 𝑦 = 16π‘₯ 2 βˆ’ 80π‘₯ + 100
4. 0 = 9π‘₯ 2 βˆ’ 36
5. 𝑦 = βˆ’π‘₯ 2 + 16
STATION #4 – Solve by Completing the Square
Solve the following quadratic equations by completing the
square.
1. π‘₯ 2 + 6π‘₯ + 8 = 0
2. π‘₯ 2 = 8π‘₯ βˆ’ 9
3. π‘₯ 2 + 6π‘₯ = βˆ’4
STATION #5 Solve by Square Root Method
1. 𝑓(π‘₯) = 3π‘₯ 2 βˆ’ 4 2. 𝑓(π‘₯) = 2(π‘₯ βˆ’ 3)2 βˆ’ 2
3. y = 3(x + 1)2 - 5
4. π‘₯ 2 = 8
STATION #6 THE QUADRATIC FORMULA
Solve each equation using the Quadratic Formula.
1. π‘₯ 2 βˆ’ 8π‘₯ + 15 = 0
2. 2π‘₯ 2 + 3 = 7π‘₯ Evaluate the discriminant for each equation and determine
the number and types of roots.
3. 5π‘₯ + 1 = 3π‘₯ 2 4. 4π‘₯ 2 + 4π‘₯ = βˆ’1
STATION #7 Regression
1.
2.
STATION #8 Application
1.Whenthesquareofacertainnumberisdiminishedby9timesthenumbertheresultis36.
Findthenumber.
2.Acertainnumberaddedtoitssquareis30.Findthenumber.
3.Aftertseconds,aballtossedintheairfromthegroundlevelreachesaheightofhfeet
givenbytheequationh=144t–16t2.
a.
Whatistheheightoftheballafter3second?
b.
Whatisthemaximumheighttheballwillreach?
c.
Findthenumberofsecondstheballisintheairwhenitreachesaheightof224
feet.
d.
Afterhowmanysecondswilltheballhittheground?
4.Arocketcarryingfireworksislaunchedfromahill80feetabovealake.Therocketwillfall
intolakeafterexplodingatitsmaximumheight.Therocket’sheightabovethesurfaceofthe
lakeisgivenbyh=-16t2+64t+80.
a.
Whatistheheightoftherocketafter1.5second?
b.
Whatisthemaximumheightreachedbytherocket?
c.
Howlongwillittakefortherockettohit128feet?
d.
Afterhowmanysecondsafteritislaunchedwilltherockethitthelake?