Chap.5 Thermodynamic Properties of Homogeneous Mixture (1) Chemical potential, μi : (為了解決數學上單位之問題) 目的:探討熱力學性質受溶液組成變化之影響 For pure substance: dU=TdS - PdV → d(nU)= Td(nS) - Pd(nV) …state change For mixture: d(n U) = Td(nS) - Pd(n V) + ∑ μ i dn i …… (a) i 同理: d(n H) = Td(nS) - (n V)dP + ∑ μ i dn i i …… (b) d(n A) = -(nS)dT - Pd(n V) + ∑ μ i dn i …… (c) d(n G ) = -(nS)dT + (n V)dP + ∑ μ i dn i …… (d) i i ⎡ ∂ (n U) ⎤ 由(a) → μ i = ⎢ ∂n ⎥ i ⎦ n S, n V , n ⎣ j≠ i ⎡ ∂ (n H) ⎤ 由(b) → μi = ⎢ ∂n ⎥ i ⎦ n S, P, n ⎣ j≠i ⎡ ∂ (n A) ⎤ 由(c) → μ i = ⎢ ∂n ⎥ i ⎦ T, n V , n ⎣ j≠i ⎡ ∂ (n G ) ⎤ 由(d) → μi = ⎢ ⎥ ⎣ ∂n i ⎦ T,P,n = G i : partial molar Gibbs free j≠i energy of i 1 Edited by Prof. Yung-Jung Hsu (2) Partial molar property, Mi : 偏微性質 M : 溶液總熱力學性質,M=PVTSHUGA。 M i : 物質 i 於純物質狀態下所表現之熱力學性質。 M i : 物質 i 於混合質狀態下所表現之熱力學性質。 Solution behaviors: 1. ideal solution a.體積可加成,V=X1V1+X2V2。 b.混合過程不放熱,ΔH= 0(T=constant) 2. real solution a. 體積不可加成,V≠X1V1+X2V2。(因混合前後分子間吸引 力改變) b. 混合過程放熱,ΔH≠ 0(T≠ constant) 2 Edited by Prof. Yung-Jung Hsu For real solution: V≠X1V1+X2V2 要達到此線性組合,並非該物質單獨存在時所存在時所表現之熱 力學性質 M i ,而是該物質於溶液狀態下所展現之熱力學性質 M i ,則此線性組成關係才會成立 → V = X 1V1 + X 2 V2 Define: partial molar property M i : 1 M i 之線性組合關係式 M = ∑ ni M i or M = ∑ X i M i ○ i i 2 微分式: 因為 M = ∑ ni M i = n1 M 1 + n2 M 2 ○ i ⎡ ∂M ⎤ ⎛ ∂n ⎞ ⎛ ∂n = M 1 ⎜⎜ 1 ⎟⎟ + M 2 ⎜⎜ 2 ⎢ ⎥ ⎝ ∂n1 ⎠ T , P ,n2 ⎣ ∂n1 ⎦ T , P ,n2 ⎝ ∂n1 ⎞ ⎟⎟ = M1 ⎠ T , P , n2 ⎡ ∂M ⎤ = M2 ⎢ ⎥ ∂ n ⎣ 2 ⎦ T , P , n1 ⎡ ∂M ⎤ M = , M=VSHUGA → i ⎢ ∂n ⎥ ⎣ i ⎦ T , P ,n j ≠ i ⎡ ∂G ⎤ = μi If M=G 帶入, Gi = ⎢ ⎥ ⎣ ∂ni ⎦ T , P ,n j ≠i ∵ V = nV1 + nV2 , for real solution(1+2) as a function of n2 added into the solution. 3 Edited by Prof. Yung-Jung Hsu (3) Gibbs-Duhem Equation For any homogeneous fluid in a steady-state: 1. M i 線性組合: 因為 M = ∑ ni M i i For a binary A-B solution and consider the Gibbs free energy: → G = n A G A + nB GB For one-mole of solution: G = X A G A + X B G B → d d G = G A dX A + G B dX B + X A d G A + X B d G B -----(1 式) 2.函數分析: 因為 G=G(T, P, nA, nB) 全微分 → ⎛ ∂G ⎞ ⎛ ∂G ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎟⎟ dG = ⎜ dn A + ⎜⎜ ⎟ dT + ⎜ ⎟ dP + ⎜⎜ ⎝ ∂T ⎠ P ,n ⎝ ∂P ⎠ T ,n ⎝ ∂n A ⎠ T , P ,nB ⎝ ∂n B ⎞ ⎟⎟ dn B ⎠ T , P ,n A ⎛ ∂G ⎞ ⎛ ∂G ⎞ =⎜ ⎟ dT + ⎜ ⎟ dP + G A dn A + G B dn B ⎝ ∂T ⎠ P ,n ⎝ ∂P ⎠ T ,n For one-mole solution: ⎛ ∂G ⎞ ⎛ ∂G ⎞ dG = ⎜ ⎟ dT + ⎜ ⎟ dP + G A X A + G B X B ⎝ ∂T ⎠ P , X ⎝ ∂P ⎠ T , X -----(2 式) (1 式)=(2 式) ⎛ ∂G ⎞ ⎛ ∂G ⎞ dG = ⎜ ⎟ dT + ⎜ ⎟ dP − ( X A d G A + X B d G B ) = 0 ⎝ ∂T ⎠ P , X ⎝ ∂P ⎠ T , X → Gibbs‐Duhem Equation ∂M ⎞ ⎛ ∂M ⎞ ⎟ dT + ⎜ ⎟ dP − ∑ X i d M i = 0 ⎝ ∂T ⎠ P , X ⎝ ∂P ⎠ T , X i ⎛ General form: d M = ⎜ (M=VSHUGA) At T, P=constant, ∑ X i d M i = 0 i 4 Edited by Prof. Yung-Jung Hsu (4) Partial molar properties 之間的數學關係式 Ex1: H i = U i + P V i Ex2: dG i = -Si dT + V i dP → Partial molar property 與一般熱力學性質具有相同數學關係式 (5) Fugacity(fi),Activity(ai) 目的:解決純物質之 G 於某一情況下所發生之不合理現象。 For pure substance: dG= -SdT+VdP, at constant T → dG=VdP. For ant pure gas i : dGi=VidP(any gas, constant T) For ideal gas i : dG i = RT dP = RTdlnP (ideal gas, constant T) P Because any real gas at P=0 → ideal gas 代入上式 → dG i P =0 = RTdlnP P =0 (any gas at P=0, constant T) =RTdln0 (不合理) → for any gas at P=0, dG i ≠ RTdlnP 定義: Fugacity(fi)逸壓: dG i = RTdlnf i (constant T) → 為了代替原來真實壓力所定義出之假想壓力即為 Fugacity Summary: ideal gas and constant T : dG i = RTdlnP real gas and constant T : dG i = RTdlnf i for ideal gas: f i = P, for real gas: f i ≠ P, fi =1 P fi ≠1 P for mixture: dG i = RTdlnf i (因為壓力沒有 partial molar pressure) → 2 2 ∫ d G = ∫ RTd ln f i 1 i 1 5 Edited by Prof. Yung-Jung Hsu 2 ΔG i = G2 − G1 = RT ∫ d ln f i = RT ln 1 f2 f1 ※ if take 1 as the pure state of a material and also view it as the standard state, then Gi − Gi , pure = Gi − G 0 = RT ln fi f i0 fi , 上式變為 Gi − Gi , = RT ln a i pure f i0 Define: Activity, ai ≡ (6) Activity 1. Raoult’s Law: Consider a binary A-B solution in equilibrium with their vapor at constant T: ※Practically, this is only obeyed for very concentrated A with dilute B in the A-B solution. 2. Henry’s Law If, however, the bond energies A-A and B-B are not equal, the evaporation rate (~vapor pressure) of A and B should be modified. e.g. PA = X A PA0 re' ( A) = X A K A (Henry’s Law) re ( A) , where re' ( A) is evaporation rate of A in A-B re ( A) is evaporation rate of pure A KA is Henry’s law constant PA=XAKA → (Henry’s Law) PB=XBKB 6 Edited by Prof. Yung-Jung Hsu 3. Vapor-Pressure V.S. composition plot for A-B: 4. Correlation with activity:γ Consider a species i in the solution in equilibrium with its vapor at constant T: ※ If the vapor of i is ideal gas → f i = Pi (vapor pressure of i ) , and f i , pure = PA0 (standard vapor pressure) ∴ ai = Pi Pi 0 a. If the component i exhibits Raoultian behavior (ideal solution) → Pi = X i Pi 0 As a result, ai = Pi X i Pi 0 = = X i (Raoult’s law and ideal Pi 0 Pi 0 solution) → fi = X i ⇒ fi = X i fi0 0 fi 7 Edited by Prof. Yung-Jung Hsu For example: Fe-Cr alloy at 1600℃ b. If the component i obeys Henry’s law: → Pi = X i K i As a result, ai = Pi X K = i 0 i = X i K i (Henry’s law and ideal 0 Pi Pi solution) For example: Fe-Ni binary alloy at 1600℃ c. Relationship between Henry’s law and Raoult’s Law In a binary system, if one component obeys Henry’s law → another component must follow Raoult’s law (7) To determine Mi Consider G in the binary A-B solution system ∵ G = f (T , P, n A , n B ) ⎯全微分 ⎯⎯→ ⎛ ∂G ⎞ ⎛ ∂G ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎟⎟ dG = ⎜ dn A + ⎜⎜ ⎟ dT + ⎜ ⎟ dP + ⎜⎜ ⎝ ∂T ⎠ p ,n ⎝ ∂P ⎠T ,n ⎝ ∂n A ⎠ T , P ,n A ⎝ ∂n B ⎞ ⎟⎟ dn B ⎠ T , P ,n A At constant T and P → dG = G A dn A + GB dnB 8 Edited by Prof. Yung-Jung Hsu For one mole of solution → dG = G A dn A + GB dnB ⎛ ∂G ⎞ ⎟⎟ 對 X B 微分→ ⎜⎜ ⎝ ∂X B ⎠T , P ⎛ ∂G ⎜⎜ ⎝ ∂X B ⎛ ∂X ⎞ ⎛ ∂X = G A ⎜⎜ A ⎟⎟ + G B ⎜⎜ B ⎝ ∂X B ⎠T , P ⎝ ∂X B ⎞ ⎟⎟ ⎠T ,P ⎞ 1 式) ⎟⎟ = G B − G A -----(○ ⎠T , P 2 式) 又 G = X A G A + X B GB -----(○ 2 → G + X A ⎛⎜⎜ dG ⎞⎟⎟ 1 x X A )+○ (○ ⎝ dX B ⎠T , P ⎛ dG ⎝ dX B ∴ GB = G + X A ⎜⎜ = X A GB + X B GB = GB ⎛ dG ⎞ ⎞ ⎟⎟ ⎟⎟ = G − X A ⎜⎜ ⎝ dX A ⎠ T , P ⎠T ,P ⎛ dG ⎞ ⎛ dG ⎟⎟ = G − X A ⎜⎜ ⎝ dX A ⎠ T , P ⎝ dX B 同理 G A = G + X B ⎜⎜ ⎞ ⎟⎟ ⎠T ,P ※ Method1: 代數法 ∴for binary A-B solution system 9 Edited by Prof. Yung-Jung Hsu ※ Method2: 幾何法 1→ I A = I B + d M 由○ 3 ----○ 2→ I B = M − X A d M 由○ 4 ----○ dX A dX A →IA = M − X A dM dM dM + = M + (1 − X A ) dX A dX A dX A = M + XB dM dM = M − XB dX A dX B 與 Method1 比較→ I A = M A , I B = M B ∴ M A , M B at X A,i 之幾何法求解 (i) 作 M V.S. X A 圖 at X A = X A.i 之切線 (ii) 與 X A = 0 之交點為 I B , X A = 1 之交點為 I A (iii) M A = I A , M B = I B ∴ M A = f (X A ) B.C. : X A ≅ 1.0 , M A = M A (pure) XA = 0, MA = MB ∞ (infinite dilution) M B = f (X A) 10 Edited by Prof. Yung-Jung Hsu B.C. : X A ≅ 1.0 , M B = M B ∞ (infinite dilution) X B = 0 , M B = M B (pure) (8) Property of mixing ※在相同狀態下(constant T and P ),溶液混和前後其熱力學性質 之差異。 1. Gibbs free energy change: Consider a binary A-B solution, the Gibbs free energy change before and after the formation of solution: ΔG M = G M = G final − Ginitial = GsolutionA− B − G pureA& pureB GsolutionA− B = n A G A + n B G B , G pureA& pureB = n A G A + n B G B G A : Partial molar free energy of solution, G A : molar free energy of pure A ∴ ΔG M = n A (G A − G A ) + n B (GB − GB ) ------(3 式) A Definition: Δ M A = M A − M A pure A 變成 solution 後 A 之性質變化 …... relative partial molar property 相對部分性質 A e.g. ΔG A = G A − G A , M ∴ ΔG M = n A ΔG A − nB ΔGB M For solution at constant T: 2 2 ∫ d G = ∫ RTd ln f i 1 i 1 11 Edited by Prof. Yung-Jung Hsu G2 − G1 = RT ln f2 f1 If we take 1 as the pure state of a material and also view it as the standard state, 2 as the solution state, then Gi − Gi pure = RT ln fi = RT ln ai fi0 M ∴ G A − G A = RT ln a A = ΔG A 帶入(3 式) GB − G B = RT ln a B = ΔG B M 帶入(3 式) → ΔG M = n A ( RT ln a A ) + nB ( RT ln a B ) For one mole of solution → ΔG M = RT ( X A ln a A + X B ln a B ) …… any solution For an ideal solution: a A = X A , a B = X B → ΔG M = RT ( X A ln X A + X B ln X B ) 2. Volume change: ΔV M = V final − Vinitial = VsolutionA− B − V pureA& pureB = ( n A V A + n B VB ) − ( n A V A + n B VB ) = n A (V A − V A ) + n B (VB − VB ) = n A ΔV A M + n B ΔVB M For one mole of solution → ΔVM = X A (V A − V A ) + X B (VB − VB ) …… any solution ⎛ ∂G ⎞ ∵ d G A = − S A dT + V A dP ⇒ V A = ⎜⎜ A ⎟⎟ ------(4 式) ⎝ ∂P ⎠T ⎛ ∂G ⎞ & d G A = − S A dT + V A dP ⇒ V A = ⎜⎜ A ⎟⎟ ------(5 式) ⎝ ∂P ⎠T ⎡ ∂ (G A − G A ) ⎤ ⎥ ,where G A − G A = RT ln a A ∂P ⎢⎣ ⎥⎦ T (4 式)-(5 式) → V A − V A = ⎢ 12 Edited by Prof. Yung-Jung Hsu ⎡ ∂ (G B − G B ) ⎤ VB − VB = ⎢ ⎥ ,where G B − G B = RT ln a B ∂P ⎢⎣ ⎥⎦ T 同理 For an ideal solution: (G A − G A ) id = RT ln X A 帶入上式 & (GB − GB ) id = RT ln X B 帶入上式 → (V A − V A ) id = ⎛⎜ RT ln X A ⎞ M ⎟ = 0 帶回 ΔV 中 ∂ P ⎝ ⎠T & (VB − VB ) id = ⎛⎜ RT ln X B ⎞ M ⎟ = 0 帶回 ΔV 中 ∂ P ⎝ ⎠T ⇒ ΔV M = X A (V A − V A ) id + X B (VB − VB ) id = 0 …… ideal solution 3. Entropy change: ΔS M = X A ( S A − S A ) + X B ( S B − S B ) …… any solution ΔS M ,id = − R( X A ln X A + X B ln X B ) = − R ∑ X i ln X i …… ideal solution i 4. Enthalpy change: ΔH M = X A ( H A − H A ) + X B ( H B − H B ) …… any solution ΔH M ,id = 0 …… ideal solution ※ Summary: For an ideal solution, the entropy change upon mixing ΔG M ,id = RT ∑ X i ln X i < 0 (不可逆自發) i ΔS M ,id = − R ∑ X i ln X i > 0 (不可逆自發) i ΔH M ,id = 0 (不放熱亦不吸熱) ΔV M ,id = 0 (體積可加成) 13 Edited by Prof. Yung-Jung Hsu (9) Activity coefficient γi: 判斷 ideal solution/ real solution 之 差異 1. Excess property: 剩餘性質 ∴ G XS ≡ ΔG M − ΔG M ,id = RT ( X A ln 2. Activity coefficient: γ i = aA a + X B ln B ) XA XB ai , activity coefficient of i in the solution: Xi ∴ G XS = RT ( X A ln γ A + X B ln γ B ) = X A ( RT ln γ A ) + X B ( RT ln γ B ) ------(6 式) ∵ M = ∑ X i G AXS , where G AXS is excess molar property (剩餘部分 性質) For a binary A-B solution: G XS = X A G AXS + X B G BXS ------(7 式) Combine(6 式)&(7 式) → G AXS = RT ln γ A , G BXS = RT ln γ B ⇒ ∴ ln γ i = GiXS RT 3. γ i for ideal /real solution: For ideal solution: ai = X i ⇒ γ i = For real solution: ai ≠ X i ⇒ γ i = 14 ai =1 Xi ai ≠ 1, & γ i = f ( X i ) Xi Edited by Prof. Yung-Jung Hsu 4. Experimental determination of ai & γ i : a. by Gibbs-Duhem equation at constant T&P: ( ai V.S. X i ) → ∑ X dM → ∑ X dG → ∑ X RTd ln f i i i = 0 , M=G 代入 i = 0 , 又 d Gi = RTd ln f i 代入 i ai = i = 0 , RT 為常數 ∴ ∑ X i d ln f i = 0 …… (8 式) fi ⇒ f i = ai f i o 代入(8 式) o fi → ∑ X i d ln ai f i o = 0 → ∑ X i (d ln ai + d ln f i o ) = 0 , ( f i o =constant, ∴ d ln f i o = 0 ) → ∑ X i d ln ai = 0 For a binary solution system: X A d ln a A + X B d ln a B = 0 → d ln a A = − XB d ln a B XA 上式積分, from pure A to A solution: 15 Edited by Prof. Yung-Jung Hsu X A=X A ∫ d ln a A = X A=X A ∫ X A =1 右式= ln a A 左式= − X A =1 X A=X A X A=X A ∫ ( X A =1 − − ln a A XB d ln a B XA X A =1 = ln a A X A=X A (∵ a A X A =1 = 1, ln a A X A =1 = 0) XB )d ln a B XA ∴原式 ⇒ ln a A X A=X A =− X A=X A ∫ ( X A =1 XB )d ln a B XA (i) From data, we get a B V.S. X B data (ii)Rearrange the data in the form (− ln a B ) V.S. ( (iii)Plot (− ln a B ) V.S. ( XB ) XA XB ) XA → We can get (ln a A ) V.S. X A from the area, then we get a B V.S. X B data b. by Gibbs-Duhem equation at constant T&P: ( γ i V.S. X i ) → ∑ X dM → ∑ X dG i i i XS = 0 , M = G XS 代入 = 0, 又 dG XS = RTd ln γ i 代入 ∴ RT ∑ X i d ln γ i = 0 ⇒ ∑ X i d ln γ i = 0 For a binary solution system: X A d ln γ A + X B d ln γ B = 0 同理 ⇒ ln γ A X A=X A =− X A=X A ∫ X A =1 ( XB )d ln γ B XA (i) From data, we get γ B V.S. X B data (ii)Rearrange the data in the form (− ln γ B ) V.S. ( 16 XB ) XA Edited by Prof. Yung-Jung Hsu (iii)Plot (− ln γ B ) V.S. ( XB ) XA → We can get (ln γ A ) V.S. X A from the area, then we get γ B V.S. X B data 17 Edited by Prof. Yung-Jung Hsu
© Copyright 2026 Paperzz