AirTemperatureSensorSitingClassificationinNordicCountries MareileWolff1,InnaHaapa2,MinnaHuuskonen2,PetraJohansson3,Juho‐PekkaKaukoranta2, GabrielKielland1,MiinaKrabbi4,SibyllevonLöwis5,AslaugvanNes1,HildegunnNygård1,Maria Santanen2,ArniSigurdsson5,TedTorfoss1,CristofferWittskog3 1NorwegianMeteorologicalInstitute,Oslo,Norway 2FinnishMeteorologicalInstitute,Helsinki,Finland 3SwedishMeteorologicalandHydrologicalInstitute,Norrköping,Sweden 4EstonianEnvironmentAgency,Tallinn,Estonia 5IcelandicMeteorologicalOffice,Reykjavík,Iceland Introduction Airtemperatureisoneofthemostimportantclimateparameterandismeasuredbyalmostall standardautomaticweatherstationsaroundtheworld.Theaccuracyofthemeasurementis determinedbytheinstrumentquality,itsuncertaintyandoverallperformanceaswellas calibrationandmaintenanceroutines.Furthermore,thetemperaturemeasurementsare influencedbytheirimmediatevicinity.Thedistancetoartificialandnaturalheatsourcesor sinks,topography,vegetationandshadingeffectsareallfactorswhichmayaffectthe representativenessofthemeasurements.TheWorldMeteorologicalOrganization'sCommission forInstrumentsandMethodsofObservation(WMOCIMO)givessuggestionsonthesitingofa temperaturesensor(WMO,2008)andalsorecommendsasitingclassificationsystemtoclassify thosestationswhicharenotperfectlylocatedforeasierevaluationoftheexpecteddataquality (CIMO/WMO,2010).TheCIMOsitingclassificationsystemisadaptedfromaschemedeveloped atMeteoFrance(Leroy,1998andLeroy,2006). Withintheco‐operationbetweentheNordicnationalmeteorologicalservicesinthefieldof Observations(NordObs),aworkinggroupwasestablishedtoworktowardsacommonapproach ofmetadatacollectionandsiteclassificationoftheirnetworks. FirstexperienceswiththeWMOCIMOsitingclassificationbytheparticipatingcountrieshad shownacoupleofcommonchallengeswhenimplementingitforstationsathigherlatitudes.For example,thecombinationoflowelevationandveryvaryingazimuthanglesofthesun throughoutayear,typicallandscapeformsandvegetationtypesoftenresultinasitingclass unsuitedforclimatologicalassessmentofthetemperature. Twenty‐fivestationsinEstonia,Finland,Iceland,Norway,andSwedenwereevaluatedand classifiedapplyingacommonmetadatascheme.ThefourcriteriaoftheWMOCIMOsiting classification(slope,vegetation,distancetoheatsourcesandwaterbodiesandshading)were analysedseparatelyforthosestations.Siteswereadditionallyevaluatedbasedonthe experiencesofthestationholdersandtheentireNordobs‐team.Forafewselectedstations, moredetailedanalyseswereperformed. Thispapersummarizesandconcludesontheevaluationresults.Thecommonmetadataschemes forallstations,thedetailedanalysesoftheselectedstationsandanextendeddiscussionofthe resultswillbepublishedinareportbytheNordObsco‐operationinautumn2016andwillalso beprovidedtotheWMO/CIMOexpertteamcurrentlyworkingonthattopic. Results Duringsummer2015,25stationsinallfivecountrieswereevaluated,applyingthecommon metadatascheme.Foreachstation,theCIMOclassificationwasperformed.Theresultsare showninthehistograminFigure1.Thefirstfourbarsforeachclassindicatethenumberof stationsseparatelyforeachcriterion. At20of25stations,thevegetationwasevaluatedasclass1(greenbars).Twostationswere classifiedasclass3andthreestationswereclassifiedasclass4.All25stationsaresituatedon flatterrainorslopeswithananglelessthan19°(yellowbars).Thedistancetoheatsourcesand waterbodiesislargeenoughforclass1(>100m)at11stations(redbars),about30m(class2) at8stationsandabout10m(class3)at5stations.Only1stationiscloserthan10mtoheat sources,justifyingaclass4. Theshadecriterionistheonlycriterionforwhichasignificantamountofhighclasses(class4 and5)weregiven.At15stationsintotal,shadeonthetemperaturesensorisexperiencedifthe sunishigherthan7°or20°(purplebar). Thelast(blue)barshowstheoverallevaluation.Thesiteclassisequaltothehighestclass numbergivenforanycriterion.Formoststationsreceivingclass4or5,theshadecriterionwas determiningthehighclass.Nostationwasclassifiedasclass3.Fivestationswereclassifiedas class1andfourasclass2. Number of Stations per class Vegetasjon Slope HS/WB Shade WMO 25 20 11 9 9 9 8 5 4 1 0 0 1 2 6 5 7 3 2 0 0 0 3 0 1 4 0 0 0 5 Figure1.SiteclassificationresultsforNordobsstations.Thebars/numbersindicatethenumberofstationsperclassfor eachcriterionandfortheoverallsiteclassification,seecoloredlegend.Totally,25stationswereclassified. Figure2comparestheresultsoftheCIMOsiteclassificationwiththeevaluationofeachstation, basedontheopinionandexperiencesfromtheNordObsgroup.Colorsareusedforindicating theinfluenceoftheexposureontemperaturemeasurements.Onlythreecolorsareusedfor simplicity,indicatingnoinfluence(green=class1),littleinfluence(yellow=classes2and3)anda lotofinfluence(red=classes4and5). Whilethesitingclassificationclassifieshighinfluenceontemperaturemeasurementson16 stations,theNordobsgroupevaluatesonlytemperaturemeasurementsatfivestationstobe highlyinfluenced. 18 16 14 12 10 Red Yellow 8 Green 6 4 2 0 WMO NordObs Figure 2: Evaluation of temperature influence of siting exposure on temperature measurements by WMO siting classification and by Nordobs Conclusions Generally,theimplementationofaclassificationofsitingisveryuseful.Currently,theavailable metadataaboutsitesdifferalotfordifferentcountriesastheyhavebeendevelopedindividually andoftenreflectverylocalcharacteristicsofthetypicallandscapesandevenculturalaspects. Theusedvocabularymaybeunderstooddifferently,i.e.theterm“suburban”isverydependent onthetypicalsizeanddensityofthecitiesineachcountry. Beingabletocharacterizethesitingofasensorbyoneorseveralnumbersmakesitpossibleto comparetheinfluenceofthesitingwithinthenetwork,betweendifferentnetworksandover time.Sitescanbemoreobjectivelyassessedanditiseasytoidentifypossibleimprovementsand theirimpact.Lastbutnotleast,communicationabouttheimportanceofsitingbothinternaland externalwasnoticeablesimplifiedbythesuggestedclassificationsystem. Estimateduncertainty Theestimateduncertaintyofthetemperaturemeasurementduetositingisgivenforclasses3,4 and5intheWMOSitingclassificationfortemperature.Theadditionalestimateduncertainty addedbysitingisupto1°Cforclass3,upto2°Cforclass4andupto5°Cforclass5, CIMO/WMO2010. Foraspecificclass,theinfluenceontemperatureduetoslope,vegetation,heatsources/water bodiesorshadowshouldgivethesameestimateduncertainty,butthisdoesnotseemcorrectfor allcases. AlotofstationsintheNordiccountriesgetclass4or5duetoshadowduringashortperiodof theyear.Accordingtothesitingclassificationthisisexpectedtogivethesameestimated uncertaintyasanearbyheatsourcethatwillgiveaninfluenceonthetemperaturemostofthe year.Withoutdoubt,shadehasaninfluenceonthetemperatureandthecomparisonbetween twoneighboredNorwegianstationsshowedatemperaturedifferencepossiblycausedbya prolongedperiodwithshadeonthesensorofabout2°C,categorizedasclass5.However,results fromthesamestudyandsimilarstudiesfromFinlandandEstoniaalsoshowedthatasignificant effectontemperaturecouldnotbeseenforshortshadingperiods. Bothfromliteratureresearch(i.e.Kumamoto,2012;Jinaxia,2014)andownstudiesitcouldalso beenshown,thatdifferentkindofheatsourcesmayhaveverydifferentimpactsontheair temperaturenearby: Waterbodiesseemtohavealargerimpactthanflatheatsourcesduringday. Theinfluenceofelevatedheatsourcesdependsverymuchonthedirectionofthesite– anobstacleintheNorthofthesensorscanchangethetemperatureofthesensorby severaldegrees(forclasses4and5),whileanobstacleintheSouthhardlyhaveany effect. Lotsofheatsourcesactsasheatsinksduringnightandthateffectseemstobelarger thanthewarmingeffectduringday. Amorereliablequantificationoftheestimatedaddeduncertaintyofthetemperature measurementsandapossibleadjustmentoftheclass‐limitsarerequired.Bothwouldraisethe valueofthesitingclassificationschemetremendously. Theperformedanalysesofselectedstationsshowedthedifficultiesofjustcomparingdatafrom existingstations.Firstly,itishardtofindsuitablesitesincloseenoughvicinitythathomogenous temperaturedataseriescanbeassumed.Further,influencesareoftencombined:Aheatsource mightalsogiveshadeandslopesareoftenconnectedtochangesinelevationwhichhaveamuch higherimpactontemperature. Therefore,TheNordiccountrieshighlyrecommendfurtherstudieswithexistingandespecially withdedicatedstationsandsensorconfigurationstoquantifytheeffectofdifferenttypeofheat sources,shade,slopesandvegetation.Oneinitiativeperformingcurrentlysuchstudiesisthe METEOMET‐projectwhichalsocollaborateswiththetheWMO/CIMOexpertteam. Further,modelstudiescanbeaveryhelpfulandcomplimentarytooltothiseffort.Different influencescanbeassessedindependentlyfromeachotherandthedistancetothesensororthe sizeofthefeaturecanbechangedstepless.Forexample,Kinoshita(2014)havesuccessfully appliedthemodelENVI‐metforsiteexposurestudies. Additionaleffectsnotyetconsidered Severalaspectsoftheexposureofasensorarenotyetconsideredinthesitingclassification. Basedonthegeneralliteratureinmicrometeorology(i.e.Geiger,1995)andmorefocused studieswithinforest/agricultural(i.e.Dobrowski,2009)andurbanclimatology(Eliassonand Svennson,2003;Grimmond,2001;Oke,1981;Oke,2006;Shudo,1997;Sailor,1995),itis suggestedthatthefollowingfeaturesmayhavesignificantinfluenceontemperaturesensors: Thedirectionoftheslope Thepositionofthesensorontheslope(withinorwithoutcold‐airdrainageareaor ratherontopofthehill) Night‐timeeffects: o Reductionoflongwaveradiationfromthegroundduetoobstaclesreducingthe skyview o Strongercoolingoftypicalflatheatsources(parkinglot,etc) Obstacles(naturalandartificial)intheNorthwhichchangetheradiationbalanceofthe areaandthusmayinfluencethetemperaturemeasurementsnearby Changesinsnowheightandthusthechangingdistancebetweenthesensorandthe ground. Offcourse,itisimportanttonotoverloadthesitingschemetoguaranteeitsapplication.The Nordiccountriessuggesttocooperatewithrelatedscientificcommunities(asforest/agricultural andurbanclimatology)whendevelopingfurthercategories. AdaptionofthesiteclassificationintheNordiccountriesTheNordiccountrieswill continueusingthedevelopedcommonmetadataschemeforevaluatingtheirsites.Bythat, additionalinformationiscollectedinacomparablewaywhichmayallowadaptingthesiting classificationtofuturemodifications. InsteadofreportingonlyonenumberasaresultoftheWMO/CIMOsitingclassification,the Nordiccountrieswillreportallfournumbersforthefourcategoriesallowingforamore balancedevaluationofthesite. TheNordiccountrieswillapplytheWMO/CIMOsitingclassificationwiththefollowing adaptions: 1. Asimpletime‐parameterwillbeusedadditionaltothesunelevationintheshade‐criterion. TheNordiccountrieswillneglectshadowingfromobstacleswhichlastslessthan1hour (equaltoanobstaclewidthof30°).Consequently,theseparationbetweenshadeonsensor whenthesunishigherthan5°and7°isnotnecessary. Class1 Awayfrom projectedshade whenthesunis higherthan7°or shadeonsensor forlessthan1 hourperday. Class2 Awayfrom projectedshade whenthesunis higherthan7°or shadeonsensor forlessthan1 hourperday. Class3 Awayfrom projectedshade whenthesunis higherthan7°or shadeonsensor forlessthan1 hourperday. Class4 Awayfromall projectedshade whenthesunis higherthan20°or shadeonsensor forlessthan1 hourperday. Class5 Sitenotmeeting requirementsfor class4 2. BecauseofthewidespreadtypicalheathlandvegetationintheNordiccountries,whichis sparseandoftenreachesanaturallowheightofabout40cm,thevegetationcriterionwillbe relaxed.Especially,whenthetemperaturesensorismountedin2mheight,theslightly highervegetationisnotexpectedtohaveanimpactonthetemperaturemeasurements. Class1 Groundcovered withnaturaland lowvegetation (<10cm) representativeof theregion Class2 Groundcovered withnaturaland lowvegetation (<10cm) representativeof theregion Class3 Groundcovered withnaturaland lowvegetation (<45cm) representativeof theregion Class4 Class5 ‐ ‐ 3. FollowingthepracticeinFinland,forareaswheretheabundanceofwaterincreases30% withinaradiusof1km,waterbodiesbetween10and100mawayfromtothesensorarenot consideredforthesitingclassification. Further,ifalowvegetationareaneedstobemaintained,i.e.withinafieldofcropsorinanurban area,aplotsizeof6mtimes9misrecommended,inaccordancewiththeGuideto ClimatologicalPractices(WMO,2011). Literature (CIMO/WMO,2010)CommissionforInstrumentsandMethodsofobservation,World MeteorologicalOrganization,2010:Finalabridgedreportofthethefifteenthsession,Helsinki, Finland,WMO‐No.1064,Geneva,Switzerland. (CIMO/WMO,2012)CommissionforInstrumentsandMethodsofobservation,World MeteorologicalOrganization,2010:Finalabridgedreportofthesixteenthsession,StPetersburg, RussianFederation,WMO‐No.1138,Geneva,Switzerland. (Dobrowski,2009)S.Z.Dobrowski,J.T.Abatzoglou,I.A.Greenberg,S.G.Schladow:Howmuch influencedoeslandscape‐scalephysicographyhaveonairtemperatureinamountain environment?AgriculturalandForestMeteorology,149,1751‐1758,doi: 10.1016.j.agrformet.2009.06.006. (Ehinger,1993)J.Ehinger:InstrumentsSitingandExposureofMeteorologicalInstrumentsIOM55 (WMO/TD589),Geneva1993 (EliassonandSvennson,2003)I.EliassonandM.K.Svensson:Spatialairtemperaturevariations andurbanlanduse–astatisticalapproach.Meteorol.Appl.10,135–149 http://onlinelibrary.wiley.com/doi/10.1017/S1350482703002056/abstract (Geiger,1995):TheClimateNeartheGround,HarvardUniversityPress,Cambridge Massachusetts6thedition. (Grimmond2001)C.S.B.Grimmond,S.K.Potter,H.N.Zutter,C.Souch:RapidMethodsto estimateSky‐ViewFactorsappliedtourbanareas.Int.J.Climatol.,21,903‐909. (Kumamoto,2012)MarikoKumamoto,Otsuka,Sakai&Aoyagi:FieldExperimentontheEffectsof anearbyAsphaltRoadonTemperatureMeasurement.In:PapersPresentedattheWMO TechnicalConferenceonMeteorologicalandEnvironmentalInstrumentsandMethodsof Observation(TECO–2012),InstrumentsandObservingMethodsReportNo.109,Geneva, Switzerland. (Jinaxia,2014)GuoJinaxiaetal.:Experimentsandsimulationsofsitingclassificationforwindand temperatureobservations.In:PapersPresentedattheWMOTechnicalConferenceon MeteorologicalandEnvironmentalInstrumentsandMethodsofObservation(TECO– 2014),InstrumentsandObservingMethodsReportNo.116,Geneva,Switzerland. (Kinoshita,2014)N.Kinoshita:AnEvaluationMethodoftheEffectofObservationEnvironmenton AirTemperatureMeasurement.Boundary‐LayerMeteorol,152,pp.91‐105. (Leroy,1998)MichelLeroy:“Meteorologicalmeasurementrepresentativenessnearbyobstacles influence”inPapersPresentedattheWMOTechnicalConferenceonMeteorologicaland EnvironmentalInstrumentsandMethodsofObservation(TECO–98),Instrumentsand ObservingMethodsReportNo.70,WMO/TD‐No.877;IOMReport‐No.70,Geneva. (Leroy,2006)MichelLeroy:“Documentationofsurfaceobservation.Classificationforsitingand performancecharacteristics”inPapersPresentedattheWMOTechnicalConferenceon MeteorologicalandEnvironmentalInstrumentsandMethodsofObservation(TECO–2006)IOM Report‐No.94 (Oke,1981)T.R.Oke:Canyongeometryandthenocturnalurbanheatisland:comparisonofscale modelandfieldobservation.J.Climatol.,1,237‐254. (Oke,2006)T.R.Oke:“InitialGuidancetoObtainRepresentativeMeteorologicalObservationsat UrbanSites”inInstrumentsandObservingMethodsReportNo.81,WMO/TD‐No.1250,Geneva. (Sailor,1995)D.J.Sailor:Simulatedurbanclimateresponsetomodificationsinsurfacealbedoand vegetativecover.JournalofAppliedMeteorology,34(7),1694‐1704. http://journals.ametsoc.org/doi/abs/10.1175/1520‐0450‐34.7.1694 (Shudo,1997)H.Shudoetal.:Studyontemperaturedistributioninfluencedbyvariouslanduses. EnergyandBuildings,26,199‐205 http://www.sciencedirect.com/science/article/pii/S0378778896010353 (WMO,2008)WorldMeteorologicalOrganization,2008:GuidetoMeteorologicalInstruments andMethodsofObservation.WMO‐No.8,SeventhEdition,Geneva,Switzerland. (WMO,2011)WorldMeteorologicalOrganization:GuidetoMeteorologicalPractices.WMO‐No. 100,2011edition,Geneva.
© Copyright 2025 Paperzz