Release Note

Release Note
Release Date : Dec. 2016
Product Ver. : Gen 2017 (v2.1) and Design+ 2017 (v2.1)
DESIGN OF General Structures
Integrated
Design
System
for
Building
and
General
Structures
Enhancements
 midas Gen
(1)
Imperfection Loads as per EN1992-1-1 & EN1993-1-1
(2)
Beam/Column/Wall Design as per ACI318-14 / ACI318M-14
(3)
RC Torsion Design as per EN1992-1-1 2004
(4)
Steel Torsion Design as per EN1993-1-1 2004
(5)
Inelastic Time History Analysis for Plate Element
(6)
Revit 2017 Interface
(7)
Select Members by the Range of Analysis Result
 midas Design+
(1)
Beam/Column/Wall Design as per ACI318-14 / ACI318M-14
3
18
midas
Gen
Gen 2017 (v2.1) Release Note
1. Imperfection Loads as per EN1992-1-1 & EN1993-1-1
Equivalent Horizontal Loads
Global initial sway imperfection is determined as coefficient, Ф, which is multiplied by vertical loads of structure.
Clause 5.3.2(4)B in EN1993-1-1 states that where the overall applied lateral loads are
more than 15% of the vertical loads in a member then the notional horizontal loads can
be ignored. This is expressed as HEd ≥ 0.15 VEd.
Example of Equivalent Horizontal Load
3 /20
midas
Gen
Gen 2017 (v2.1) Release Note
1. Imperfection Load as per EN1992-1-1 & EN1993-1-1 (continued)
Calculate the coefficient, Ф
• Load > Settlement/Etc. > Imperfection > Imperfection Data
It provides both automatic calculation of coefficient considering story height
and no. of columns and user defining feature of user coefficient. However if the
column is slanted or if it does not contain the nodes from either corresponding
story or upper story, it is not possible to obtain the no. of columns
automatically.
Calculate Imperfection Load
• Load > Settlement/Etc. > Imperfection > Create Imperfection Load
Create Load Case and Nodal Load for Imperfection automatically.
•
Equivalent load of Local Imperfection
is not supported and Nodal Load
should be defined by user for wall or
slanted column.
4 /20
midas
Gen
Gen 2017 (v2.1) Release Note
1. Imperfection Load as per EN1992-1-1 & EN1993-1-1 (continued)
Nodal Load generation for Imperfection Load
Roof
454.3*0.001
= 0.454 kN
0.454 kN
5F
Ф1 * P1
Ф1 * P1
P1
Ф2 * P2
P2
P3
1.769 kN
4F
Ф1 * P1
Ф2 * P2
Ф3 * P3
Ф3 * P3
1.769 kN
(Ф2 * P2) – (Ф1 * P1)
5.296 kN
5.296 kN
3F
10.556 kN
10.556 - 5.296 = 5.26 kN
= 5260 N
(Ф3 * P3) – (Ф2 * P2)
10.556 kN
2F
Ф3 * P3
17.698 kN
17.698 kN
1F
Imperfection Load
Input Nodal Load
Imperfection Load Generation Method
Axial Force(kN)
Imperfection Load
Input Nodal Load (N)
Imperfection Load Generation in midas Gen
5 /20
midas
Gen
Gen 2017 (v2.1) Release Note
1. Imperfection Load as per EN1992-1-1 & EN1993-1-1 (continued)
Create Load Combination
• Results > Load Combination
Dead Load and Live Load are applied to all Imperfection Load Case in Load Combination. For the Load Combination which contains lateral load, imperfection
load case in the same direction as lateral load will only be considered. Below is the example of Imperfection Load Case for Dead Load, Live Load, Wind Load and
Seismic Load for Load Combination.
Table for Imperfection Check
• Results > Result Table > Imperfection
It provides Check Table to show how factored load is applied to Imperfection
Load. Table on the right shows that application of Imperfection Load is
required if 15% of Axial Force is greater than Horizontal Force.
Horizontal Force < 0.15*Axial Force
6 /20
midas
Gen
Gen 2017 (v2.1) Release Note
2. Design as per ACI318-14 / ACI318M-14
• Beam Design
Define shear reinforcement spacing according to Vs value.
ACI318-11
ACI318-14
ACI318M-14
Detail Result (midas Gen 2017 v2.1)
Vs < 4*SQRT(fc)*bw*d
Vs > 4*SQRT(fc)*bw*d
7 /20
midas
Gen
Gen 2017 (v2.1) Release Note
2. Design as per ACI318-14 / ACI318M-14 (continued)
• Column Design
Check the area of transverse reinforcement according to concrete strength(fc’) and axial force(Pu) in Special Moment Frames.
ACI318-11
ACI318-14
ACI318M-14
Detail Result (midas Gen 2017 v2.1)
Pu > 0.3Agfc’ or fc’ > 70MPa
8 /20
midas
Gen
Gen 2017 (v2.1) Release Note
2. Design as per ACI318-14 / ACI318M-14 (continued)
• Wall Design
Perform wall design taking into account area of transverse reinforcement and enhanced thickness limitation of special boundary from Special Structural Wall
ACI318-11
ACI318-14
ACI318M-14
Detail Result (midas Gen 2017 v2.1)
9 /20
midas
Gen
Gen 2017 (v2.1) Release Note
3. RC Torsion Design as per EN1992-1-1:2004
Torsion design for circular or rectangular sections of RC members are as follows:
1) Design for Shear : Calculate Asw/s by Ved.
2) Convert the rectangular section to an equivalent hollow box section.
3) Check if concrete section is adequate [BS EN1992-1-1:2004, 6.3.2(4)].
4) Check only minimum reinforcement is required.[BS EN1992-1-1:2004, 6.3.2(4)].
5) Calculate additional link reinforcement required to resist torsion.
6) Calculate amount of total transverse reinforcement.
7) Calculate additional longitudinal reinforcement.
Design Result (Gen 2017 v2.1)
Design > Concrete Design Code (Gen 2017 v2.1)
10 /20
midas
Gen
Gen 2017 (v2.1) Release Note
3. RC Torsion Design as per EN1992-1-1:2004 (continued)
Detail Report (Gen 2017 v2.1)
=================================================================
[[[*]]] ANALYZE SHEAR AND TORSION CAPACITY.
=================================================================
( ). Calculate crushing limit for combined shear and torsion.
-. TEd / TRd_max + VEd / VRd_max = 0.615 ---> O.K.
( ). Compute design parameters.
-. Gamma_c = 1.50 (for Fundamental or Earthquakes).
-. Alpha_cc= 1.00 (Default or User Defined).
-. fcd
= Alpha_cc * fck / Gamma_c =
0.020 kN/mm^2.
-. Gamma_s = 1.15 (for Fundamental or Earthquakes).
-. fywd = fyw / Gamma_s =
0.348 kN/mm^2.
( ). Calculate required transverse reinforcement for torsion. ( Asw1 = 71.33000 mm^2. )
-. SreqT = Asw1*2*Ak*cot(Theta)*fyd / TEd = 116.510 mm.
-. Smax1 = dUk / 8.0
= 175.000 mm.
-. Smax2 = 0.75 * d
= 402.375 mm.
-. SmaxT = min [SreqT, Smax1, Smax2, B, H ] = 116.510 mm.
( ). Calculate parameters of section for torsion.
-. tef = A / U = B*H / [2*(B+H)] = 100.0000 mm.
-. Ak = (B-tef) * (H-tef)
= 100000.0000 mm^2.
-. Uk = 2*(B + H - 2*tef)
= 1400.0000 mm.
( ). Calculate the torsional cracking moment.
-. Alpha_ct = 1.000
-. fctm = 0.30 * fck^(2/3)
=
0.0029 kN/mm^2.
-. fctd = 0.7*fctm = 0.7*Alpha_ct*(0.7*fctm)/Gamma_c =
-. T_Rdc = 2*Ak*fctd*tef = 27033.70 kN-mm.
-. Asw,req/s = TEd / (2*Ak*cot(Theta)*fyd) =
-. Asw,use/s = 99990.00000 mm^2/m.
-. Asw,req/s < Asw,use/s ---> O.K.
0.0014 kN/mm^2.
( ). Calculate shear strength of concrete.
-. bw
= 300.000 mm.
-. k
= MIN[ 1.0+sqrt(200/d), 2.0 ] =
1.6106 (by d unit is mm).
-. Asl = 1161.30000 mm^2. (Area of tensile reinforcement).
-. Rhol = Asl/(bw*d) =
0.00722
-. C_Rdc = 0.18/Gamma_c =
0.1200
-. V_Rdc1 = [ C_Rdc*k*(100*Rhol*fck)^(1/3) ]*bw*d =
86.691 kN.
-. V_Rdc2 = [ 0.035*k^(3/2)*sqrt(fck) ]*bw*d
=
63.065 kN.
-. V_Rdc = MAX[ V_Rdc1, V_Rdc2 ] =
86.691 kN.
( ). Calculate limit for torsion check.
-. TEd / TRd_c + VEd / VRd_c =
3.153 ---> Reinforcement to resist torsion is required.
( ). Calculate design torsional resistance moment.
-. Nu
=
0.5000
-. Alphacw =
1.0000
-. Theta =
45.0000 (deg)
-. T_RdMax = 2*Nu*Alphacw*fcd*Ak*tef*sin(Theta)*cos(Theta) = 100000.000 kN-mm.
( ). Calculate design value of the maximum shear force.
-. Nu
=
0.5000 (fck <= 70MPa)
-. Nu1
= Nu =
0.5000
-. Alphacw =
1.0000
-. Theta =
45.0000 (deg)
-. V_RdMax = Alphacw*bw*0.9*Nu1*fcd/{cot(Theta)+tan(Theta)}* =
724.275 kN.
612.22370 mm^2/m.
( ). Calculate required longitudinal reinforcement for torsion.
-. Asl,req = TEd*cot(Theta)*Uk / (2*Ak*fyd) = 857.11317 mm^2.
-. Asl,use = 1.01360e+003 mm^2.
-. Asl,req < Asl,use ---> O.K.
( ). Calculate shear strength of concrete.
-. V_Ed =
86.454 kN.
-. bw
= 300.000 mm.
-. k
= MIN[ 1.0+sqrt(200/d), 2.0 ] =
1.6106 (by d unit is mm).
-. Asl = 1161.30000 mm^2. (Area of tensile reinforcement).
-. Rhol = Asl/(bw*d) =
0.00722
-. C_Rdc = 0.18/Gamma_c =
0.1200
-. V_Rdc1 = [ C_Rdc*k*(100*Rhol*fck)^(1/3) ]*bw*d =
86.691 kN.
-. V_Rdc2 = [ 0.035*k^(3/2)*sqrt(fck) ]*bw*d
=
63.065 kN.
-. V_Rdc = MAX[ V_Rdc1, V_Rdc2 ] =
86.691 kN.
-. Vwd = 0.0 kN. (V_Rdc > V_Ed) ---> Shear reinforcement is not required.
( ). Calculate required shear reinforcement. ( Asw1 = 71.33000 mm^2. )
-. Asw/s1 = Vwd / (0.9*fywd*d) =
0.00000 mm^2/m.
-. Calculate spacing s1
= Not Required.
-. Rhow =
0.00110 (by concrete and steel classes).
-. Smax1 = Asw / (bw*Rhow) = 434.10056 mm.
-. Smax2 = 0.75*d
= 402.37500 mm.
-. SmaxT = 116.50970 mm.
-. Applied spacing s = MIN[ Smax1, Smax2, SmaxT ]
= 116.50970 mm.
-. N_leg = 2
-. Asw/s = N_leg*Asw1 / s
= 1224.44739 mm^2/m.
-. Nu
=
0.5000 (fck <= 70MPa)
-. Nu1 = Nu =
0.5000
-. Aswmax/s = 0.5*1.0*Nu1*fcd*bw/fywd = 4312.50000 mm^2/m.
11 /20
midas
Gen
Gen 2017 (v2.1) Release Note
4. Steel Torsion Design as per EN1993-1-1:2004
Torsion design is performed automatically with member design and the procedure is as follows:
1) Calculate St Venant torsional constant, I_T.
2) Calculate Torsional section modulus, W_t.
3) Calculate Cross sectional Torsion and Shear resistance.
4) Check flexure by taking into account reduction factor due to torsion.
5) Calculate yield criterion for the elastic verification.
Torsion Design is only applicable to rectangular or circular hollow box section.
Design Result (Gen 2017 v2.1)
12 /20
midas
Gen
Gen 2017 (v2.1) Release Note
4. Steel Torsion Design as per EN1993-1-1:2004 (continued)
Detail Report (Gen 2017 v2.1)
=================================================================
CHECK TORSIONAL RESISTANCE.
=================================================================
[[[*]]]
( ). Calculate elastic resistance moment about major axis.
[ Eurocode3:05 6.1, 6.2.5 ]
-. Wely
=
0.0019 m^3.
-. Mc_Rdy = Wely * fy / Gamma_M0 =
525.52 kN-m.
( ). Calculate parameters for torsional resistance.
-. p = 2[(h-t) + (b-t)] - 2r(4-PI) =
1.52 m.
-. Ap = (h-t)*(b-t) - r^2*(4-PI) =
0.15 m^2.
4*Ap^2*t/p + p*t^3/3
-. Wt = ----------------------=
2.89e-003 m^3.
t + 2*Ap/p
( ). Calculate torsional resistance (T_Rd).
[ Eurocode3:05 6.2.7]
-. T_Rd = Wt * fy / sqrt[3] / Gamma_M0 =
( ). Check ratio of moment resistance (M_Edy/Mc_Rdy).
M_Edy
142.19
-. ------ = --------------- = 0.271 < 1.000 ---> O.K.
Mc_Rdy
525.52
=================================================================
CHECK INTERACTION OF COMBINED RESISTANCE.
=================================================================
458.72 kN-m.
( ). Check ratio of torsional resistance (T_Ed/T_Rd).
T_Ed
46.22
-. ------ = -------------- = 0.101 < 1.000 ---> O.K.
T_Rd
458.72
( ). Calculate shear area.
[ Eurocode3:05 6.2.6, EN1993-1-5:04 5.1 NOTE 2 ]
-. Avy = Area * B/(B+h) =
0.0076 m^2.
-. Avz = Area * h/(B+h) =
0.0076 m^2.
( ). Check ratio of shear resistance (V_Edz/Vpl_T_Rdz).
( LCB = 2, POS = 1/4 )
-. Applied shear force : V_Edz =
137.86 kN.
V_Edz
137.86
-. --------- = --------------- = 0.127 < 1.000 ---> O.K.
Vpl_T_Rdz
1089.36
[[[*]]]
( ). Calculate Major reduced design resistance of bending and shear.
[ Eurocode3:05 6.2.8 (6.30) ]
-. In case of V_Edz / Vpl_Rdz < 0.5
-. My_Rd = Mc_Rdy =
525.52 kN-m.
=================================================================
CHECK SHEAR RESISTANCE.
=================================================================
( ). Calculate plastic shear resistance in local-z direction (Vpl_T_Rdz).
[ Eurocode3:05 6.1, 6.2.6 ]
-. Vpl_Rdz = [ Avy*fy/SQRT(3) ] / Gamma_M0 =
1211.43 kN.
-. Taut_Ed = T_Ed / Wt =
15998.59 KPa.
-. Vpl_T_Rdz = [ 1 - Taut_Ed/(fy/SQRT(3)/Gamma_M0) ]*Vpl_Rdz =
=================================================================
[[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS.
=================================================================
[[[*]]]
( ). Calculate Minor reduced design resistance of bending and shear.
[ Eurocode3:05 6.2.8 (6.30) ]
-. In case of V_Edy / Vpl_Rdy < 0.5
-. Mz_Rd = Mc_Rdz =
525.52 kN-m.
( ). Check general interaction ratio.
[ Eurocode3:05 6.2.1 (6.2) ] - Class3
N_Ed
M_Edy
M_Edz
-. Rmax1 = ------------+ ------+ ------A*fy/Gamma_M0 My_Rd
Mz_Rd
= 0.271 < 1.000 ---> O.K.
1089.36 kN.
( ). Calculate yield criterion for the elastic verification.
-. Sigx_Ed =
74406.10 KPa.
-. Tau_Ed =
15998.59 KPa.
[ Sigx_Ed ]^2
[
TauEd
]^2
-. Rmax6_1 = [ ------------- ] + 3 * [ ------------- ]
[ fy/Gamma_M0 ]
[ fy/Gamma_M0 ]
= 0.083 < 1.000 ---> O.K.
-. Rmax
= MAX[ Rmax1, Rmax6_1 ] = 0.271 < 1.000 ---> O.K.
13 /20
midas
Gen
Gen 2017 (v2.1) Release Note
5. Inelastic Time History Analysis for Plate Element
• In order to consider the nonlinear behavior of slabs, plate elements with plastic material properties can now be considered in Inelastic Time History
and Pushover analysis.
- Time History analysis : Nonlinear Analysis Type + Analysis Method by ‘Direct Integration’ or ‘Static’ + Subsequent to ‘Load Case’ with Static or Construction Load Case
- Pushover analysis : Initial Load by ‘Import Static Analysis’ + Add ‘Load Case’ by Static or Construction Load Case
• Following plastic material model can be applied: Tresca, Von Mises, Mohr-Coulomb, Drucker-Pager
 Properties > Plastic > Plastic Material
 Node/Element > Mesh > Define Sub-Domain
Select plastic material model
‘Material Nonlinear’ check option
Plastic Material Model
Nonlinear Analysis Control
Assign plastic material of Rebar
(Only possible with Von Mises model)
Create plastic material
Static or Construction Load
Material Properties
Rebar Definition in Sub-domain
Case
Time History Load Case
Pushover Global Control
14 /20
midas
Gen
Gen 2017 (v2.1) Release Note
5. Inelastic Time History Analysis for Plate element (continued)
 Slab deflection result of inelastic analysis
A
GMNL
GMNL(RB)
MNL(RB)
MNL
Elastic
0.00
Displacement (m)
-0.10
0
5
10
15
20
-0.20
-0.30
-0.40
GMNL
GMNL(RB)
MNL
MNL(RB)
-0.50
-0.60
-0.70
: Geo & Material Nonlinear
: Geo & Material Nonlinear + Re-Bar
: Material Nonlinear
: Material Nonlinear + Re-Bar
Load Step
Displacement of node A
15 /20
midas
Gen
Gen 2017 (v2.1) Release Note
6. Revit 2017 Interface
•
Using Midas Link for Revit Structure, direct data transfer between midas Gen and Revit 2017 is available for Building Information Modeling (BIM) workflow. Midas Link for
Revit Structure enables us to directly transfer a Revit model data to midas Gen, and deliver it back to the Revit model file. It is provided as an Add-In module in Revit
Structure and midas Gen text file (*.mgt) is used for the roundtrip.
Functions
 File > Import > midas Gen MGT File
 File > Export > midas Gen MGT File
Linear
Elements
<>
Beam
<>
Brace
<>
Curved Beam
>
Beam System
>
Truss
Planar
Elements
Boundary
Send Model to midas Gen
Load
Revit 2017
Gen2017
>
Foundation Slab
<>
Structural Floor
<>
Structural Wall
<>
Wall Opening & Window
>
Door
>
Vertical or Shaft Opening
>
Offset
>
Rigid Link
>
Cross-Section Rotation
>
End Release
>
Isolated Foundation Support
>
Point Boundary Condition
>
Line Boundary Condition
>
Wall Foundation
>
Area Boundary Condition
>
Load Nature
>
Load Case
>
Load Combination
>
Hosted Point Load
>
Hosted Line Load
>
Hosted Area Load
Other
Parameters
Revit <> Gen
Structural Column
Material
Level
>
<>
>
16 /20
midas
Gen
Gen 2017 (v2.1) Release Note
7. Select Members by the Range of Analysis Result
•
User can select members which contain value within the specified contour range of Legend.
•
‘Select’ button is added and this can be accessed by clicking the contour of Legend. If the range of contour is modified, members with the value within the modified range
will be selected.
Modify Maximum
and Minimum Values
Select elements
within the range
Range of Legend by Default Setting
User Defined Range of Legend
17 /20
midas
Design+
Design+ 2017 (v2.1) Release Note
1. Design as per ACI318-14 / ACI318M-14
• Beam Design
Define shear reinforcement spacing according to Vs value.
ACI318-11
ACI318-14
ACI318M-14
Detail Result (Gen 2017 v2.1)
18 /20
midas
Design+
Design+ 2017 (v2.1) Release Note
1. Design as per ACI318-14 / ACI318M-14 (continued)
• Column Design
Check the area of transverse reinforcement according to concrete strength(fc’) and shear force(Pu) in Special Moment Frames.
ACI318-11
ACI318-14
ACI318M-14
Detail Result (Design+ 2017 v2.1)
Pu > 0.3Agfc’
19 /20
midas
Design+
Design+ 2017 (v2.1) Release Note
1. Design as per ACI318-14 / ACI318M-14 (continued)
• Wall Design
Perform wall design taking into account area of transverse reinforcement and enhanced thickness limitation of special boundary from Special Structural Wall
ACI318-11
ACI318-14
ACI318M-14
Detail Result (Design+ 2017 v2.1)
20 /20