Math 40 Prealgebra Section 3.4 - HOMEWORK In Exercises 1-16, combine like terms by first using the distributive property to factor out the common variable part, and then simplifying. 1. 17xy2 + 18xy2 + 20xy2 2. 13xy − 3xy + xy 3. −8xy2 − 3xy2 − 10xy2 4. −12xy − 2xy + 10xy 5. 4xy − 20xy 6. −7y 3 + 15y3 7. 12r − 12r 8. 16s − 5s 9. −11x − 13x + 8x 10. −9r − 10r + 3r 11. −5q + 7q 12. 17n + 15n 13. r − 13r − 7r 14. 19m + m + 15m 15. 3x3 − 18x3 16. 3x2 y + 2x2 y In Exercises 17-32, combine like terms by first rearranging the terms, then using the distributive property to factor out the common variable part, and then simplifying. 17. −8 + 17n + 10 + 8n 18. 11 + 16s − 14 − 6s 19. −2x3 − 19x2 y − 15x2 y + 11x3 20. −9x2 y − 10y3 − 10y 3 + 17x2y 21. −14xy − 2x3 − 2x3 − 4xy 22. −4x3 + 12xy + 4xy − 12x3 23. −13 + 16m + m + 16 24. 9 − 11x − 8x + 15 25. −14x2 y − 2xy2 + 8x2 y + 18xy2 26. −19y2 + 18y3 − 5y 2 − 17y 3 27. −14x3 + 16xy + 5x3 + 8xy 28. −16xy + 16y2 + 7xy + 17y 2 29. 9n + 10 + 7 + 15n 30. −12r + 5 + 17 + 17r 31. 3y + 1 + 6y + 3 32. 19p + 6 + 8p + 13 1 2015 Worrel Math 40 Prealgebra Section 3.4 - HOMEWORK In Exercises 33-56, simplify the expression by first using the distributive property to expand the expression, and then rearranging and combining like terms mentally. 33. −4(9x2y + 8) + 6(10x2y − 6) 34. −4(−4xy + 5y 3) + 6(−5xy − 9y 3) 35. 3(−4x2 + 10y2 ) + 10(4y2 − x2 ) 36. −7(−7x3 + 6x2 ) − 7(−10x2 − 7x3 ) 37. −s + 7 − (−1 − 3s) 38. 10y − 6 − (−10 − 10y) 39. −10q − 10 − (−3q + 5) 40. −2n + 10 − (7n − 1) 41. 7(8y + 7) − 6(8 − 7y) 42. −6(−5n − 4) − 9(3 + 4n) 43. 7(10x2 − 8xy2 ) − 7(9xy2 + 9x2 ) 44. 10(8x2 y − 10xy2) + 3(8xy2 + 2x2 y) 45. −2(6 + 4n) + 4(−n − 7) 46. −6(−2 − 6m) + 5(−9m + 7) 47. 8 − (4 + 8y) 48. −1 − (8 + s) 49. −8(−n + 4) − 10(−4n + 3) 50. 3(8r − 7) − 3(2r − 2) 51. −5 − (10p + 5) 52. −1 − (2p − 8) 2 2015 Worrel Math 40 Prealgebra Section 3.4 - HOMEWORK 53. 7(1 + 7r) + 2(4 − 5r) 54. (5 − s) + 10(9 + 5s) 55. −2(−5 − 8x2 ) − 6(6) 56. 8(10y 2 + 3x3 ) − 5(−7y2 − 7x3 ) 57. The length of a rectangle, L, is 2 feet longer than 6 times its width, W. Find the perimeter of the rectangle in terms of its width alone. 58. The length of a rectangle, L, is 7 feet longer than 6 times its width, W. Find the perimeter of the rectangle in terms of its width alone. 59. The width of a rectangle, W, is 8 feet shorter than its length, L. Find the perimeter of the rectangle in terms of its length alone. 60. The width of a rectangle, W, is 9 feet shorter than its length, L. Find the perimeter of the rectangle in terms of its length alone. 61. The length of a rectangle, L, is 9 feet shorter than 4 times its width, W. Find the perimeter of the rectangle in terms of its width alone. 62. The length of a rectangle, L, is 2 feet shorter than 6 times its width, W. Find the perimeter of the rectangle in terms of its width alone. 3 2015 Worrel
© Copyright 2025 Paperzz