Integral Calculus Assumed Knowledge Reminder — Standard Integrals Note — Four Basic Rules Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , x1 and sec2 x Example — Standard Integrals of e x , x1 and sec2 x Integration by Substitution Definition — Differentials Note — Integration by Substitution Example — Integration by Substitution 5.1 Assumed Knowledge Reminder — Standard Integrals 5.1 Assumed Knowledge Reminder — Standard Integrals I R ax n dx = a x n+1 + c. n+1 5.1 Assumed Knowledge Reminder — Standard Integrals I I a x n+1 + c. n+1 R 1 cos(ax + b) dx = sin(ax + b) + c. a R ax n dx = 5.1 Assumed Knowledge Reminder — Standard Integrals I I I a x n+1 + c. n+1 R 1 cos(ax + b) dx = sin(ax + b) + c. a R 1 sin(ax + b) dx = − cos(ax + b) + c. a R ax n dx = 5.1 Assumed Knowledge Reminder — Standard Integrals a x n+1 + c. n+1 R 1 I cos(ax + b) dx = sin(ax + b) + c. a R 1 I sin(ax + b) dx = − cos(ax + b) + c. a The notation F(x) is Rused to represent the antiderivative of f (x) so that F0 (x) = f (x) or f (x) dx = F(x) + c. I R ax n dx = Note — Four Basic Rules Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb a f (x) dx = F(b) − F(a) where F0 (x) = f (x). Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb 3. Rc a a f (x) dx = F(b) − F(a) where F0 (x) = f (x). f (x) dx = Rb a f (x) dx + Rc b f (x) dx, where a < b < c. Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb 3. Rc 4. Rb a a a f (x) dx = F(b) − F(a) where F0 (x) = f (x). f (x) dx = Rb a f (x) dx = − f (x) dx + Ra b f (x) dx. Rc b f (x) dx, where a < b < c. Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb 3. Rc 4. Rb a a a f (x) dx = F(b) − F(a) where F0 (x) = f (x). f (x) dx = Rb a f (x) dx = − f (x) dx + Ra b Rc b f (x) dx, where a < b < c. f (x) dx. Item 2 is often referred to as the Fundamental Theorem of Calculus. The integral represents the area under the curve f (x) between the points x = a and x = b. 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. I R 1 x dx = ln |x| + c. 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. I R 1 x I R sec2 x dx = tan x + c. dx = ln |x| + c. 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. I R 1 x I R sec2 x dx = tan x + c. 1 x and sec2 x dx = ln |x| + c. Note |x| is the modulus of x and |x| = x, when x ≥ 0 but |x| = −x, when x ≤ 0. Example — Standard Integrals of e x , 1 x and sec2 x Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx = 12 e 2x + 25 x 2 + c Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx = 12 e 2x + 25 x 2 + c 2. R 1 dx 5x + 4 Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx = 12 e 2x + 25 x 2 + c 2. R 1 dx 5x + 4 = 1 5 ln |5x + 4| + c 3. R π 4 0 1 + sin2 x cos2 x dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 0 sec2 x dx + R π 4 0 tan2 x dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 sec2 x dx + R π 4 sec2 x dx + R π 4 0 0 tan2 x dx sec2 x − 1 dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 0 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 π 0 π = 2[tan x]04 − [x]04 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 π 0 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx π = 2[tan x]04 − [x]04 = 2(tan π4 − tan 0) − ( π4 − 0) 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 π 0 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx π = 2[tan x]04 − [x]04 = 2(tan π4 − tan 0) − ( π4 − 0) =2− π 4 Further Examples Maths In Action: Book 1 Page 72 Exercise 2A/2B 5.3 Integration by Substitution Definition — Differentials 5.3 Integration by Substitution Definition — Differentials For y = f (x), if δy is a small change in y induced by a small change in x, δx, then δy = lim δx→0 i.e. δy = δy .δx δx dy .δx dx 5.3 Integration by Substitution Definition — Differentials For y = f (x), if δy is a small change in y induced by a small change in x, δx, then δy = lim δx→0 i.e. δy = δy .δx δx dy .δx dx The smaller δx becomes, the better the approximation for δy . 5.3 Integration by Substitution Definition — Differentials For y = f (x), if δy is a small change in y induced by a small change in x, δx, then δy = lim δx→0 i.e. δy = δy .δx δx dy .δx dx The smaller δx becomes, the better the approximation for δy . dy is known as the y -differential and dx is known as the dy x-differential. is the coefficient of dx and is referred to as the dx differential coefficient. Note — Integration by Substitution Note — Integration by Substitution When differentiating a composite function y = g (f (x)) using the dy chain rule, then = g 0 (f (x)).f 0 (x). dx Note — Integration by Substitution When differentiating a composite function y = g (f (x)) using the dy chain rule, then = g 0 (f (x)).f 0 (x). dx Let u = f (x) then using differentials du = f 0 (x) dx therefore Z Z g 0 (f (x)).f 0 (x) dx = g 0 (u) du. Note — Integration by Substitution When differentiating a composite function y = g (f (x)) using the dy chain rule, then = g 0 (f (x)).f 0 (x). dx Let u = f (x) then using differentials du = f 0 (x) dx therefore Z Z g 0 (f (x)).f 0 (x) dx = g 0 (u) du. R Hopefully g 0 (u) du is a standard form and integration can be performed. Note — Integration by Substitution When differentiating a composite function y = g (f (x)) using the dy chain rule, then = g 0 (f (x)).f 0 (x). dx Let u = f (x) then using differentials du = f 0 (x) dx therefore Z Z g 0 (f (x)).f 0 (x) dx = g 0 (u) du. R Hopefully g 0 (u) du is a standard form and integration can be performed. The function f (x) is known as the essential function. Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx u = x2 + 5 Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx u = x 2 + 5 ⇒ du = 2x Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx u = x 2 + 5 ⇒ du = 2x R R 3x(x 2 + 5)7 dx = 23 u 7 du Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx u = x 2 + 5 ⇒ du = 2x R R 3x(x 2 + 5)7 dx = 23 u 7 du = 3 2 × 18 u 8 + c Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx u = x 2 + 5 ⇒ du = 2x R R 3x(x 2 + 5)7 dx = 23 u 7 du × 18 u 8 + c = 3 2 = 3 8 16 u +c Example — Integration by Substitution 1. Find R 3x(x 2 + 5)7 dx u = x 2 + 5 ⇒ du = 2x R R 3x(x 2 + 5)7 dx = 23 u 7 du × 18 u 8 + c = 3 2 = 3 8 16 u = 3 2 16 (x +c + 5)8 + c 2. Find R sin x cos4 x dx 2. Find R sin x cos4 x dx u = cos x 2. Find R sin x cos4 x dx u = cos x ⇒ du = − sin x 2. Find R sin x cos4 x dx u = cos x ⇒ du = − sin x R R sin x cos4 x dx = − u 4 du 2. Find R sin x cos4 x dx u = cos x ⇒ du = − sin x R R sin x cos4 x dx = − u 4 du = − 15 u 5 + c 2. Find R sin x cos4 x dx u = cos x ⇒ du = − sin x R R sin x cos4 x dx = − u 4 du = − 15 u 5 + c = − 15 cos5 x + c 3. Find R√ 1 − x 2 dx 3. Find R√ 1 − x 2 dx u = sin−1 x 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du R = cos2 u du 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du R = cos2 u du R = 12 cos 2u − 12 du 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du R = cos2 u du R = 12 cos 2u − 12 du = 1 4 sin 2u − 12 u + c 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du R = cos2 u du R = 12 cos 2u − 12 du = 1 4 sin 2u − 12 u + c = 1 4 × 2 sin u cos u − 12 u + c 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du R = cos2 u du R = 12 cos 2u − 12 du = 1 4 × 2 sin u cos u − 12 u + c p = 12 sin u (1 − sin u) − 12 u + c = 1 4 sin 2u − 12 u + c 3. Find R√ 1 − x 2 dx u = sin−1 x ⇒ x = sin(x) ⇒ dx = cos u du R√ Rp 1 − x 2 dx = 1 − sin2 u cos u du R = cos2 u du R = 12 cos 2u − 12 du = 1 4 × 2 sin u cos u − 12 u + c p = 12 sin u (1 − sin u) − 12 u + c p = 12 x (1 − x 2 ) − 12 sin−1 x + c = 1 4 sin 2u − 12 u + c 4. Find R 1√ 1− x dx (x 6= 1) 4. Find R 1√ 1− x u =1− √ x dx (x 6= 1) 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 1 Therefore dx = −2x 2 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 1 Therefore dx = −2x 2 ⇒ dx = −2(1 − u)du 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 1 Therefore dx = −2x 2 ⇒ dx = −2(1 − u)du R 1 R −2(1−u) √ dx = du u 1− x 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 1 Therefore dx = −2x 2 ⇒ dx = −2(1 − u)du R 1 R −2(1−u) √ dx = du u 1− x R = (−2u −1 + 2) du 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 1 Therefore dx = −2x 2 ⇒ dx = −2(1 − u)du R 1 R −2(1−u) √ dx = du u 1− x R = (−2u −1 + 2) du = −2 ln |u| + 2u + c 4. Find R 1√ 1− x u =1− √ dx (x 6= 1) 1 x ⇒ du = − 21 x − 2 dx 1 Therefore dx = −2x 2 ⇒ dx = −2(1 − u)du R 1 R −2(1−u) √ dx = du u 1− x R = (−2u −1 + 2) du = −2 ln |u| + 2u + c √ √ = −2 ln |1 − x| + 2(1 − x) + c Further Examples Maths In Action: Book 1 Page 74 Exercise 3/4A/4B
© Copyright 2026 Paperzz