VCE Mathematical Methods Unit 3 Workshop Mathematical Methods Unit 3 Workshop Solutions Extended Response Question a) b) c) f) V lwh 1 V l l (l 2), as w 12 l and h l 2 2 1 V l3 l2 2 A lw 2lh 2wh 1 1 A l l 2l (l 2) 2 l (l 2) 2 2 1 A l 2 2l 2 4l l 2 2l 2 7 A l 2 6l 2 A e) 1 6 2 149 3 6 2 149 2 V ( ) ( ) 2 7 7 V 22.13 cm3 A lw 6 2 149 1 6 2 149 )( ) 7 2 7 A 9.44 cm 2 A( Yes there is enough black plastic Page 5 0 3x 2 x3 f '( x) 6 x 3 x 2 0 x 2 (3 x) x 0, x 3 (0, 0) and (3,0) 0 6 x 3x 2 0 3 x(2 x) x 0, x 2 (0, 0) and (2, 4) 7 2 l 6l 2 dA 7l 6 dl 0 7l 6 6 l cm 7 BUT h l 2h 0l20 l2 l 2 7 2 d) A l 6l 2 7 40 l 2 6l 2 6 2 149 l 7 6 2 149 l , as l 2 7 l (2, 1|P a g e 6 2 149 ] 7 © Conquest Education VCE Mathematical Methods Unit 3 Workshop Page 7 Page 11 B x [0, ] 2 x [0, 2 ] 3 tan(2 x) 1 1 tan(2 x) 3 7 2x , 6 6 7 x , 12 12 kx 3 x 2 8 x x 2 (8 k ) x 3 0 0 (8 k ) 2 12 0 k 2 16k 64 12 0 k 2 16k 52 0 k 8 2 3, k 8 2 3 Page 14 Page 8 B f ( x) ( x (a ))( x (b))( x (c))( x ( d )) f ( x) ( x a )( x b)( x c)( x d ) f ( x) ( x a )((b x))((c x))( x d ) f ( x) ( x a )(b x)(c x )( x d ) Page 9 Using long division Asym : 2 x y 1 3 2x 1 Vertical: x 1 2 Horizontal: y 1 2|P a g e 3 2 5 Asym : 2 x 6 5 Asym : x 12 Remaining asymptotes spaced one period apart Asymptotes at: x 7 5 11 , x , x , x 12 12 12 12 © Conquest Education VCE Mathematical Methods Unit 3 Workshop x 7 5 2x 3 3 3 0 2 tan(2 x ) 3 tan(2 x ) 0 3 (k 1) x 4 3 (k 1) y x (k 2) (k 2) y 2 m1 m2 2 , , 0, 3 5 2 x , , , 6 3 6 3 2x Page 18 (k 1) 3 4 ( k 2) (k 1)( k 2) 12 k 2 3k 2 12 0 f (0) 2 tan(0 ) 3 f (0) 2 3 k 2 3k 10 0 (k 5)(k 2) 0 Page 16 k 5, k 2 c1 c2 log 2 ( x 2 x 2) 2 log 2 2 2 (k 1) ( k 2) 2k 4 k 1 k 5 x2 x 2 4 x2 x 6 0 ( x 3)( x 2) 0 x 3, x 2 x 3 as x 2 k 2 Page 19 f ( x) sin( x) x 2 f ( x) 2sin( x) 2 x 2 f ( x) 3 2sin( x) 2 x 3 Page 17 C Reflected about the x-axis and translated to the right. _________________________________________ D Sketch an imaginary graph with a local max with a y-value of -3 and a local minimum with a y-value of -8. Function cannot be shifted up between 3-8 units. Therefore 3|P a g e c 3 or c 8 © Conquest Education VCE Mathematical Methods Unit 3 Workshop Page 20 Domain of f ( x ) x ' 2 0 x 1 T y ' 0 2 y 0 x ' 2 0 x 1 T y ' 0 2 y x ' 2 x 2 T y ' 2 y x 0 x0 x ' 2x 2 y ' 2 y x ' 2 x 2 y' y 2 y' 3( x ' 2) cos( ) 2 2 3 y 2 cos( ( x 2)) 2 Page 22 Implied domain of f [ g ( x)] 3 log e ( x ) 0 2 3 log e ( x ) 0 2 3 x 1 2 1 x 2 Domain of g ( x ) 3 0 2 3 x 2 x Therefore domain of f [ g ( x)] : 3 1 x ( , ] 2 2 _________________________________________ Implied domain of f [ g ( x)] 3 log e ( x ) 0 2 3 log e ( x ) 0 2 3 x 1 2 1 x 2 3 0 2 3 x 2 3 1 x 2 2 x Domain of f ( x ) 1 x 0 3 0 2 3 x 2 3 1 x 2 2 x 4|P a g e Domain of g ( x ) 1 x Therefore domain of f [ g ( x)] : 1 x (1, ] 2 © Conquest Education VCE Mathematical Methods Unit 3 Workshop Page 23 dy f (2 x) g ''(h( x 2 )) h '( x 2 ) 2 x dx 2 f '(2 x) g '(h( x 2 )) dy f (2 x) g ''(h( x 2 ))h '( x 2 )2 x 2 f '(2 x) g '(h( x 2 )) dx A f '( x) 3x 2 6 x 0 3x 2 6 x 0 x(3x 6) x 0, x 2 Page 28 Therefore the first turning point from the left hand side is at x 0 , so a 0 f '( x) x 2 x log e ( x) 0 x(1 2 log e ( x)) x 0 or 1 2 log e ( x) 0 Page 24 x 0 or x e E xe x 1 1 x 1 f ( f ( x)) x 1 1 x 1 x 1 x 1 f ( f ( x)) x 1 ( x 1) 2x f ( f ( x)) 2 f ( f ( x)) x 1 2 1 2 1 2 1 2 as Arg 0 1 1 2 f (e ) e log e (e ) f (e ) ( 1 2e 1 1 , ) e 2e _________________________________________ g '( x) x 2 2 cos(2 x) sin(2 x) 2 x g '( x) 2 x 2 cos(2 x) 2 x sin(2 x) Page 25 Page 26 E y (1 f ( x)) 1 2 1 dy 1 (1 f ( x)) 2 f '( x) dx 2 dy f '( x) dx 2 1 f ( x) Page 30 B The derivative function has 2 x-ints so the original function must have 2 turning points. _________________________________________ 5|P a g e g '( ) 2( ) 2 cos(2( )) 2( ) sin(2( )) 6 6 6 6 6 2 3 g '( ) 6 36 3 2 2 3 g '( ) 6 36 6 2 x cos( x 2 2) © Conquest Education
© Copyright 2026 Paperzz