Bonding and valence electron density Cox Chapter 3 Bonding and crystal form Si NaCl Ionic bonding Ibach +Lueth Covalent bonding Metallic bonding B. Dam Vaste Stof fysica kamer U044 telefoon 47917 mail [email protected] C M S M a s t e r s : Electronic Structure of Solids. Charge localized at atoms Charge localized between atoms along the bond direction C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Bonding and crystal form C M S M a s t e r s : Electronic Structure of Solids. Silver C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Rutile TiO2 Crystal Order Crystalline C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Amorphous Poly-crystalline C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 1 Quartz SiO2 Perovskite CaTiO3 C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Crystal form & Crystal structure Pyrite FeS2 18th century: A crystal is a 3D-repitition of identical units Crystal form reflects the symmetry and the shape of its basic units Now: Crystal form is related to a minimization of the surface free energy Crystal form minimizes the number of unsaturated bonds C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Filling 2D space with repetitive units Which is not a unit cell? What type? 2 The primitive unit-cells of BCC and FCC are non-cubic! Simple cubic Body centered cubic Abundance of Space Groups / Crystal lattice – – – – – – – Face centred cubic •Choose the highest symmetry P21/c P212121 P -1 P21 C2/c Pnma P21212 29.2% 18.8 11.1 10.9 5.4 1.5 1.0 monoclinic orthorhombic triclinic monoclinic monoclinic orthorhombic orthorhombic Simple-minded phycisists prefer hexagonal and cubic structures •Choose the smallest unit C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Three common structures/stackings structures/stackings FCC BCC The complicated crystal structure of boron HCP C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Cubic close packed: abcabcabcabc-stacking Chapter3: bonding Crystal structure: abababab-stacking in hcp c b a Hexagonal lattice with two independent positions: 0,0,0 and 1/3, 2/3, 1/2 C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 3 3-mm diamond in eclogite Lattice planes b a Crystal morphology is characterized C M S M a s t e r s : Electronic Structure of Solids. by a bipyramid. Why?? C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Lattice planes Lattice planes Set of planes with identical lattice geometry (01) lattice planes b Set of planes with identical lattice geometry (02) lattice planes? b a a C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Lattice planes Lattice planes Set of planes with identical lattice geometry Only in a centered lattice the (02) planes exist as lattice planes! b a C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Set of planes with identical lattice geometry (11) lattice planes b a C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 4 Lattice planes Crystal morphology is determined by dhkl Set of planes with identical lattice geometry For orthogonal crystal systems d hkl 1 = h a 2 + 2 k b 2 2 + l c 2 2 The larger dhkl the more prominent the crystal orientation (21) lattice planes b (21) lattice planes b a a C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Diamond Structure (C, Si Ge) Ge) Diamond Structure (C, Si Ge) Ge) A A B Diamond crystal structure: Tetrahedral bonding of C , Si and Ge Diamond crystal structure: Tetrahedral bonding of C , Si and Ge B FCC with atoms on (0,0,0) and (¼,¼,¼) FCC with atoms on A=(0,0,0) and B=(¼,¼,¼) (111)-plane densely packed, 1 unsaturated bond per atom (111)-plane densely packed, 1 unsaturated bond per atom (100)-plane, 2 unsaturated bonds per atom C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding 3-mm diamond in eclogite Crystal form & Crystal structure Simple cubic d100 > dhkl Body centered cubic d110 > d200 Face centred cubic d111> d200 > d220 The crystal morphology depends on: •the type of Bravais lattice •the bonding between the atoms M S M a s t e r s : Electronic Structure of Solids. CrystalCmorphology is characterized by a (111)-bipyramid Chapter3: bonding C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 5 Crystal morphology is determined by dhkl Ionic bonding For orthogonal crystal systems d hkl = What is the charge distribution 1 2 h a 2 + k b 2 2 l c + 2 2 The larger dhkl the more prominent the crystal orientation Where are the energy levels What determines the gap – More chance of bonding network within dhkl – Less chance of unsaturated bonds – Lower surface free energy This very phenomenological picture holds for all types of bonding! C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Ionisation/affinity Ionisation/affinity The ionic levels of Na+ and Cl- in the gas phase Gas phase ionisation costs energy: E=I-A Electron affinity Ionisation energy On site e-e repulsion Na Na + 5 eV--> Na++e Cl+e --> Cl- + 3.5 eV Filled p-level ClEmpty s-level Na+ Eg = A - I = -1.5 eV Cl C M S M a s t e r s : Electronic Structure of Solids. C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Radial distribution function 1 H 3 4 Li Be 11 12 Na Mg 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 57 72 Cs Ba La Hf 87 88 89 Fr Ra Ac 57 58 La Ce 5 6 7 B C N 13 14 15 Al Si P 23 24 25 26 27 28 29 30 31 32 33 V Cr Mn Fe Co Ni Cu Zn Ga Ge As 41 42 43 44 45 46 47 48 49 50 51 Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb 73 74 75 76 77 78 79 80 81 82 83 Ta W Re Os Ir Pt Au Hg Tl Pb Bi 8 O 16 S 34 Se 52 Te 84 Po 9 F 17 Cl 35 Br 53 I 85 At 59 60 61 62 63 64 65 66 67 68 69 70 71 Pr Nd Pm SmEu Gd Tb Dy Ho Er Tm Yb Lu 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 6 1 H 3 4 Li Be 11 12 Na Mg 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 57 72 Cs Ba La Hf 87 88 89 Fr Ra Ac 57 58 La Ce 23 24 25 26 27 28 V Cr Mn Fe Co Ni 41 42 43 44 45 46 Nb Mo Tc Ru Rh Pd 73 74 75 76 77 78 Ta W Re Os Ir Pt 5 6 7 B C N 13 14 15 Al Si P 29 30 31 32 33 Cu Zn Ga Ge As 47 48 49 50 51 Ag Cd In Sn Sb 79 80 81 82 83 Au Hg Tl Pb Bi 8 O 16 S 34 Se 52 Te 84 Po 9 F 17 Cl 35 Br 53 I 85 At 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn 59 60 61 62 63 64 65 66 67 68 69 70 71 Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu The ionic levels of Na+ and Cl- in the gas phase 1 H 3 4 Li Be 11 12 Na Mg 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 57 72 Cs Ba La Hf 87 88 89 Fr Ra Ac 57 58 La Ce 5 6 7 B C N 13 14 15 Al Si P 23 24 25 26 27 28 29 30 31 32 33 V Cr Mn Fe Co Ni Cu Zn Ga Ge As 41 42 43 44 45 46 47 48 49 50 51 Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb 73 74 75 76 77 78 79 80 81 82 83 Ta W Re Os Ir Pt Au Hg Tl Pb Bi Eg = A - I+Ei = 3 eV 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn http://www.webelements.com/webel ements/scholar/properties/imageline/ The ionic levels of NaCl: NaCl: the Madelung contribution Bringing the ions closer Na+ 3s together in the lattice results in a further splitting of the Na+ and Cl- levels Na+ 3s Eg = A - I = -1.5 eV 9 F 17 Cl 35 Br 53 I 85 At 59 60 61 62 63 64 65 66 67 68 69 70 71 Pr Nd Pm SmEu Gd Tb Dy Ho Er Tm Yb Lu Gas phase ionisation costs energy: E=I-A Filled p-level ClEmpty s-level Na+ 8 O 16 S 34 Se 52 Te 84 Po Filled Filled p-level level Cl Cl-Empty Emptys-level level Na Na++ Cl- 3p Cl- 3p Energy gain due to gas phase ionic interaction: 4.5 eV Madelung energy Sum the interaction of ion i with all other ions j Sum over all i E= ±1 e2 4πε 0 a0 ∑r i, j ij Divide by 2 Divide by the number of ion pairs Em = − Am Madelung potential Each lattice has a different Madelung constant Am: NaCl= 1.7475 CsCl= 1.7629 What is the effect of the Madelung potential on the position of the energy levels of Na and Cl? Eg=A-I+Em = 17 eV e2 4πε 0 a0 Electrostatic energy per ion-pair C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 7 The ionic levels of NaCl: NaCl: the Madelung contribution The ionic levels of NaCl: NaCl: the polarization contribution Na+ 3s Madelung term: Na+ 3s Positive binding energy for ion pairs! Eg=A-I+Em = 17 eV Filled Filled p-level level Cl Cl-Empty Emptys-level level Na Na++ The ions are not in a vacuum. Each charge polarizes its surroundings. Filled Filled p-level level Cl Cl-Empty Emptys-level level Na Na++ Cl- 3p Cl- 3p The ionic levels of NaCl: NaCl: orbital overlap Understanding energy gaps Madelung term largest Na+ 3s Ionisation/Affinity energy much smaller term Eg = 9 eV Filled Filled p-level level Cl Cl-Empty Emptys-level level Na Na++ Polarisation and bandwidth decrease with distance Due to overlap the levels eV g= 9 broaden E into bands Cl- 3p C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding The gap roughly decreases with the lattice spacing Ionisation energy difference is a measure for the gap Ev Correct trend when cation same (especially for F) With heavy anions a trend is hardly seen Why? 5 eV Na gap ~ 10 eV 15 eV Cl Ag: Ionization potential ~2eV larger than in Sodium The difference in ionisation energy appears to scale with the gap?! C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding ClDifference in ionisation energy is close to the gap energy! C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 8 Ionisation energy difference is a measure for the gap Ev 5 eV Na gap ~ 10 eV 15 eV Cl Difference in ionisation energy is close to the gap energy! Cl- vacuum ~ The ionic affinity in bulk appears to be the same as the ionisation energy in vacuum! Cl- bulk Ionisation energy difference is a measure for the gap Ev 5 eV Na gap ~ 10 eV 15 eV Cl Cl- vacuum ~ The ionic affinity Difference in ionisation energy is close to the gap energy! in bulk appears to be the same as the ionisation energy in vacuum! Cl- bulk e Cl+ Cl + e + + e Cl (gas) <=> C M S Cl M a s+ ters: C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Ionisation energy difference is a measure for the gap Ev 5 eV Na gap ~ 10 eV 15 eV Cl Difference in ionisation energy is close to the gap energy! Cl+ + Cl (gas) <=> C M S M a s t ee rs: Understanding energy gaps in bulk appears to be the same as the ionisation energy in vacuum! Cl- bulk Electronic Structure of Solids. Chapter3: bonding <=> Cl + e Cl- vacuum ~ The ionic affinity ~ The on-site repulsion is of the same order as the attraction by cations in bulk e Cl+ Electronic Structure of Solids. Chapter3: bonding Cl-(bulk) Cl + e + Cl-(bulk) <=> Cl + e Understanding energy gaps: bandwidth Ag: Ionization potential ~2eV larger than in Sodium The difference in ionisation energy scales with the gap, comparing halides C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Understanding energy gaps: Top of the valence band Na+ 3s Cation Conduction band Filled level ClEmpty level Na+ Fluorine 2p valence bandwidth correlates nicely with the F-F distance, which is a measure for the overlap of the bonding orbitals Anionic valence band Cl- 3p Cationic valence band Na 2p 9 Understanding energy gaps: Top of the valence band Covalent solids: from bonds to bands Strongly directional bonds Cu+ 4s Electron pile-up between atoms Cation Conduction band How to check this? Filled level ClEmpty level Cu+ In group IV hybridisation: s2p2 -> sp3 Cationic valence band Cu 3d ‘Excitation’ energy must be compensated by bonding energy Anionic valence band Cl- 3p Covalent solids: from bonds to bands Covalent solids: from bonds to bands p Top is p-like p33 p s sp3 sp3 Heteropolar bonding: ionic vs covalent s sp3 Heteropolar bonding: ionic vs covalent ∆E = Ei2 + Ec2 Ei ∆E = Ei2 + Ec2 Ei = E A − EB Ei Ec = 2VAB For solids ∆E is not the gap, but represents the energy difference between the band midpoints Depending on Ei the bonding electrons have ‘B’-character C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding sp3 Ei = E A − EB Ec = 2VAB In homo-nuclear compounds ∆E ~ Ec The value for ∆E can be measured by PES We would like to have a scale for Ei C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 10 Heteropolar bonding: ionic vs covalent Heteropolar bonding Ei = Ea − Eb ∆E = Ei2 + Ec2 Ei = X A − X B Ei = E A − EB Ei Ei X A = electroneg ativity Ec = 2VAB For isoelectronic solids (Ge, GaAs, ZnSe and CuBr) the bondlength is constant and hence Ec too. The gaps differ. For isoelectronic solids (Ge, GaAs, ZnSe and CuBr) the bondlength is constant and hence Ec too. The gaps differ. From the measured gap (∆E) and the extrapolated Ec (Ge=5.6) From the measured gap (∆E) and the extrapolated Ec (Ge=5.6) EiGe= 0.0eV EiGe= 0.0eV EiGaAs =1.9eV EiZnSe =3.8eV EiCuBr =5.6eV C M S M a s t e r s : Electronic Structure of Solids. EiGaAs =1.9eV EiZnSe =3.8eV EiCuBr =5.6eV C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Heteropolar bonding Ei = Ea − Eb Ei = X A − X B Ei X A = electroneg ativity 1 H 3 4 Li Be 11 12 Na Mg 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 57 72 Cs Ba La Hf 87 88 89 Fr Ra Ac 57 58 La Ce Actually XA is related to the electron affinity. According to Mullliken X=0.185(I+A) C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding The Ei/Ec ratio predicts the crystal structure of binary compounds 23 24 25 26 27 28 V Cr Mn Fe Co Ni 41 42 43 44 45 46 Nb Mo Tc Ru Rh Pd 73 74 75 76 77 78 Ta W Re Os Ir Pt 5 6 7 B C N 13 14 15 Al Si P 29 30 31 32 33 Cu Zn Ga Ge As 47 48 49 50 51 Ag Cd In Sn Sb 79 80 81 82 83 Au Hg Tl Pb Bi 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn 59 60 61 62 63 64 65 66 67 68 69 70 71 Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu c c z y x Ionic b Fi=Ei/∆E=0.785 a RockSalt Salt Rock Rock Salt Ei 9 F 17 Cl 35 Br 53 I 85 At The Ei/Ec ratio predicts the crystal structure of binary compounds Ionic Fi=Ei/∆E=0.785 8 O 16 S 34 Se 52 Te 84 Po Wurtzite Ei b a Covalent Covalent Diamond structure Ec Ec 11 Question 1: Mg2NiH4 Question 1: Structure of Mg2NiH4 This is the simplified Mg2NiH4 strukture Blue balls / tetraedra = NiH4 White/Grey balls =Mg a a x z z y by x a a a x y z c b x c z y c b b c C M S M a s t e r s : Electronic Structure of Solids. a = 0.649 The monoclinic low temperature structure derives from a high temperature fluorite structure. Derive the angle between a and c and the length of a, for the ideal case C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding Chapter3: bonding Q3: explain the behaviour of the affinity for the first three rows of the PS Question 2: The hcp lattice What c lattice constant is needed to make this a really close packed lattice for atoms with radius ½a C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding http://www.webelements.com/webel ements/scholar/properties/imageline/ 1 H 3 4 Li Be 11 12 Na Mg 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 57 72 Cs Ba La Hf 87 88 89 Fr Ra Ac 57 58 La Ce 23 24 25 26 27 28 V Cr Mn Fe Co Ni 41 42 43 44 45 46 Nb Mo Tc Ru Rh Pd 73 74 75 76 77 78 Ta W Re Os Ir Pt 5 6 7 B C N 13 14 15 Al Si P 29 30 31 32 33 Cu Zn Ga Ge As 47 48 49 50 51 Ag Cd In Sn Sb 79 80 81 82 83 Au Hg Tl Pb Bi 8 O 16 S 34 Se 52 Te 84 Po 9 F 17 Cl 35 Br 53 I 85 At 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn 59 60 61 62 63 64 65 66 67 68 69 70 71 Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu Radial distribution function C M S M a s t e r s : Electronic Structure of Solids. Chapter3: bonding 12
© Copyright 2026 Paperzz