Solutions for Math 311 Assignment #3 (1) Compute the limits: iz 3 − 1 ; (a) lim 2 z→i z + 1 4z 2 (b) lim . z→∞ (z − 1)2 Solution. (a) i(z 3 − i3 ) iz 3 − 1 = lim z→i z 2 + 1 z→i z 2 + 1 i(z − i)(z 2 + iz + i2 ) = lim z→i (z − i)(z + i) 2 i(z + iz + i2 ) 3 = lim =− z→i z+i 2 or by complex L’Hospital, lim 3 iz 3 − 1 3iz 2 = lim =− 2 z→i z + 1 z→i 2z 2 lim (b) 4z −2 4z 2 = lim z→0 (z −1 − 1)2 z→∞ (z − 1)2 4 = lim =4 z→0 (1 − z)2 lim (2) Show that the limit of the function z 2 f (z) = z as z tends to 0 does not exist. Solution. Let z = x + yi. When x → 0 and y = 0, z 2 x2 = lim =1 lim x→0 x→0 x2 z y=0 When x = y and x → 0, z 2 (x + xi)2 lim = lim = −1 x→0 x→0 (x − xi)2 z x=y Therefore, limz→0 f (z) does not exist. 1 2 (3) Let az + b cz + d where ad − bc 6= 0. Show that (a) lim T (z) = ∞ if c = 0; z→∞ a (b) lim T (z) = if c 6= 0 and lim T (z) = ∞ if c 6= 0. z→∞ z→−d/c c T (z) = Proof. Since lim z→∞ 1 1 = lim z→0 T (z) T (z −1 ) cz −1 + d = lim −1 z→0 az +b c c + dz = = lim z→0 a + bz a it follows that limz→∞ T (z) = ∞ when c = 0 and limz→∞ T (z) = a/c if c 6= 0. Since ad − bc 6= 0, a(−d/c) + b 6= 0. Therefore, 1 cz + d = lim =0 z→−d/c T (z) z→−d/c az + b lim and hence limz→−d/c T (z) = ∞ when c 6= 0. (4) Find f 0 (z) when (a) f (z) = 3z 2 − 2z + 4; (b) f (z) = (1 − 4z 2 )3 ; z−1 1 (c) f (z) = (z 6= − ); 2z + 1 2 (1 + z 2 )4 (d) f (z) = (z 6= 0). z2 Answer. (a) 6z − 2 (b) −24z(1 − 4z 2 )2 (c) 3(2z + 1)−2 (d) 2(3z 2 − 1)(1 + z 2 )3 z −3 (5) Show that f 0 (z) does not exist at any point when (a) f (z) = Im(z); (b) ( z 2 /z if z 6= 0 f (z) = 0 if z = 0 3 Proof. (a) Since ∂ ∂ ∂ ∂ +i f= +i (x − yi) = 2 6= 0 ∂x ∂y ∂x ∂y for all z = x + yi, f 0 (z) does not exist at any point. (b) For z = x + yi 6= 0, ∂ ∂ ∂ ∂ (x − yi)2 +i f= +i ∂x ∂y ∂x ∂y x + yi 2(x − yi)(x + yi) − (x − yi)2 = (x + yi)2 −2i(x − yi)(x + yi) − i(x − yi)2 +i (x + yi)2 4(x − yi) 6= 0 = x + yi Therefore, f 0 (z) does not exist for z 6= 0. At z = 0, f (z) − f (0) z2 lim = lim 2 z→0 z→0 z z−0 When x → 0 and y = 0, x2 z2 = lim =1 lim x→0 z 2 x→0 x2 y=0 When x = y and x → 0, z2 (x − xi)2 lim = lim = −1 x→0 z 2 x→0 (x + xi)2 x=y Therefore, f 0 (0) does not exist. In conclusion, f 0 (z) does not exist anywhere. (6) Use Cauchy-Riemann equations to verify that f (z) is analytic when (a) f (z) = z 3 in C; (b) f (z) = z −1 for z 6= 0; 2 (c) f (z) = e−z in C. Proof. (a) Since ∂ ∂ ∂ ∂ 3 z = (x + iy)3 +i +i ∂x ∂y ∂x ∂y = 3(x + yi)2 + i2 3(x + yi)2 = 0 4 and ∂f /∂x and ∂f /∂y are continuous everywhere, f (z) is entire. (b) Since ∂ ∂ ∂ ∂ −1 +i z = +i (x + iy)−1 ∂x ∂y ∂x ∂y = −(x + yi)−2 − i2 (x + yi)−2 = 0 and ∂f /∂x and ∂f /∂y are continuous for z 6= 0, f (z) is analytic for z 6= 0. (c) Since ∂ ∂ ∂ ∂ 2 −z 2 +i e = +i e−(x+iy) ∂x ∂y ∂x ∂y 2 2 = −2(x + yi)e−(x+iy) − 2i2 (x + yi)e−(x+iy) = 0 and ∂f /∂x and ∂f /∂y are continuous everywhere, f (z) is entire. (7) Show that if both f (z) and g(z) satisfy the Cauchy-Riemann equations at z0 , so does f (z)g(z). Proof. Since C-R equations hold for f (z) and g(z) at z0 , ∂f ∂f ∂g ∂g +i = +i =0 ∂x ∂y ∂x ∂y at z0 . Therefore, ∂ ∂ ∂g ∂g ∂f ∂f +i g+f g+f (f g) = +i ∂x ∂y ∂x ∂x ∂y ∂y ∂f ∂f ∂g ∂g g+i g + f + if = ∂x ∂y ∂x ∂y ∂f ∂f ∂g ∂g =g +i +f +i =0 ∂x ∂y ∂x ∂y at z0 . Therefore, C-R equations hold for f (z)g(z) at z0 . (8) Suppose that f (z) = u + iv is analytic at z0 . Show that ∂v i ∂u 0 +i f (z0 ) = − z0 ∂θ ∂θ at z = z0 , where (r, θ) are the polar coordinates. 5 Proof. By chain rule, ∂ ∂ sin θ ∂ ∂ ∂ cos θ ∂ = cos θ − and = sin θ + . ∂x ∂r r ∂θ ∂y ∂r r ∂θ Since f (z) is analytic at z0 , ∂ ∂ +i f =0 ∂x ∂y and hence ∂ i ∂ ∂f i ∂f + f =0⇒ =− ∂r r ∂θ ∂r r ∂θ in |z − z0 | < a for some a > 0. Therefore, ∂f ∂f sin θ ∂f f 0 (z) = = cos θ − ∂x ∂r r ∂θ i cos θ ∂f sin θ ∂f =− − r ∂θ r ∂θ −iθ i ∂f e ∂f = − iθ = −i r ∂θ re ∂θ i ∂u ∂v =− +i z ∂θ ∂θ
© Copyright 2026 Paperzz