2015-04-01 LightandMatter PhotonTransportTheory MD6305Laser‐TissueInteractions Class5 JaeGwan Kim [email protected] ,X2220 DepartmentofMedicalSystemEngineering Gwangju InstituteofSciencesandTechnology Copyright.Mostfigures/tables/textsinthislecturearefromthetextbook“Laser‐Tissue InteractionsbyMarkolf H.Niemz 2007”andthismaterialisonlyforthosewhotakethis classandcannotbedistributedtoanyonewithoutthepermissionfromthelecturer. LightandBulkMatter(tissue) • Inopaquemedia,therefractionishardtomeasure duetoabsorptionandscattering loss Iinc Transmittance(%)=Itrans/Iinc loss loss Itrans • Inlasersurgery,knowledgeofabsorbingand scatteringpropertiesofaselectedtissueisessential forthepurposeofpredictingsuccessfultreatment 1 2015-04-01 LightTransportinTissue • • • • Scatteringandabsorptionoccursimultaneouslyandarewavelengthdependent · ,b=0.5~4 Scatteringmonotonicallydecreaseswithwavelength AbsorptionislargeinUV,nearvisible,andIR AbsorptionislowinredandNIRTherapeuticwindow LightTransportinTissue • Modelingoflighttransportintissuesareoftengovernedby therelativemagnitudesofopticalabsorptionandscattering – μa >>μs’:Lambert‐BeerLaw(λ ≤300nm; λ≥2000nm) – μs’>>μa :DiffusionApproximation(600nm~1000nm) – μs’~μa:EquationofRadiativeTransfer,MonteCarlo(300nm~600nm; 1200nm~2000nm) 2 2015-04-01 PhotonPropagationinTissues • AbsorptionCoefficient:μa • ScatteringCoefficient:μs • PhysicalPathlength:Lp • OpticalPathlength:Lo Scatteringandabsorbingtissue BiologicalTissue Lo/Lp =4or↑ UseMonteCarlo,RadiativeTransferTheory,or DiffusionTheory!!!! ModelingPhotonPropagation a, s, g, phase function S “Stochastic(=random)” Description 3 2015-04-01 PhotonTransportTheory • Amathematicaldescriptionoftheabsorptionand scatteringpropertiesoflightcanbeperformedin twoways – Analyticaltheory:basedonMaxwell’sequations,most fundamentalapproach However,verycomplextoderiveexactanalyticalsolutions – Transporttheory:directlyaddressesthetransportof photons,itlacksofstrictnessofanalyticaltheories Nevertheless,thishasbeenusedextensivelywhendealing withlaser‐tissueinteractionsandtheexperimentalresults weresatisfactoryinmanycases RadiativeTransportTheory • ThedirectapplicationofEMtheoryiscomplicated • RTTdealswiththetransportoflightenergyandignoreswave phenomena(polarization,interference)ofEMT • IntheRTEapproachlightistreatedascomposedofdistinct particles(photons)propagatingthroughamedium.The modelisrestrictedtointeractionsbetweenlightparticles themselvesandisderivedbyconsideringchangesinenergy flowduetoincoming,outgoing,absorbedandemitted photonswithinaninfinitesimalvolumedV inthemedium (energybalance). • Themodelconsidersasmallpacketoflightenergydefinedby → itspositionr,directionofpropagationŝ,overatimeinterval dt,andwithpropagationspeedc 4 2015-04-01 Steady‐stateRadiativeTransferEq. • Whentheradianceisconstantwithtime,radiance , isexpressedinunitsofWcm‐2sr‐1 • Powerfluxdensityinaspecificdirections withinaunitsolid angled • Thegoverningdifferentialequationforradianceiscalled radiativetransferequationandisgivenby d , , , , d d 4 where , :phasefunctionofaphotontobescattered fromdirection into , d isaninfinitesimalpathlength, d :elementarysolidangleaboutthedirection Steady‐stateRadiativeTransferEq. • Ifscatteringissymmetricabouttheopticalaxis,wemayset , with beingthescatteringangle • Whenperformingtheopticalpropertiesmeasurement, observablequantityistheintensity whichistheradianceby integrationoverthesolidangle , d (unit:Wcm−2 • Radiancecanbeexpressedas , whereis issolidangledeltafunctionpointinginto thedirectiongivenbys 5 2015-04-01 Steady‐stateRadiativeTransferEq. • Whenalaserbeamisincidentonaturbidmedium,the radianceinsidethemediumcanbedividedintoacoherent andadiffusetermaccordingtotherelation • Coherentradianceisattenuatedbyabsorptionandscattering ofthedirectbeamandthereforecanbedescribedas anditssolution exp where :incidentintensity,d:opticaldepth coherentintensityinturbidmediumdecaysasan exponentialfunction • Themainproblemisinthediffuseradiance,sincescattered photonsdonotfollowadeterminedpath Steady‐stateRadiativeTransferEq. • Dependingonthevalueofthealbedo,adequate approximationsandstatisticalapproachesmustbechosento evaluatethediffuseradiance – – – – – First‐orderscattering Kubelka‐Munk theory Diffusionapproximation MonteCarlosimulations Inverseadding‐doubling • Morecomplex moreaccurate,butmore calculationtimeneeded 6 2015-04-01 First‐OrderScattering • Assumption:diffuseradianceisverysmallcomparedto coherentradiance ≃ :firstorderscattering,sincescatteredlightcan • betreatedinasimilarmannerasabsorbedlight • Theintensityatadistancez fromthetissuesurface: exp wherez denotestheaxisoftheincidentbeam first‐orderscatteringislimitedtoplaneincidentwaves andmultiplescatteringisnotcounted • Thisworkswhend<<1ora<<0.5(verylowscattering) Kubelka‐Munk Theory • • • • • Assumption:coherentradianceisnegligible ≃ Flux :incidentradiationdirection Backscatteredflux :oppositedirection AKM andSKM:Kubelka‐Munk absorptionandscattering coefficientsofdiffuseradiation 7 2015-04-01 Kubelka‐Munk Theory , • • • Thisstatesthatradianceineitherdirectionencounterslosses duetoabsorptionandscatteringandonegaindueto oppositedirectionscattering Kubelka‐Munk Theory • Thegeneralsolutionsare exp exp with exp exp , 2 • Keyquestionishowtoconvert AKM andSKM into and • d :infinitesimalpathlengthof ascatteredphoton • d :infinitesimalpathlengthof acoherentphoton 8 2015-04-01 Kubelka‐Munk Theory • Wecanwritetheaveragevalues withb asanumericalfactorandis>1 • WiththegeometryshowninFig.2.12,weobtain 1 cos cos cos cos cos • Since doesnotdependon (assumption:purelydiffuse scattering) cos 2 cos cos • Therefore, 2 Kubelka‐Munk Theory • BecauseonlybackscatteringisassumedasshowninFig.2.11, thecorrespondingrelationfor isgivenby • Kubelka‐Munk theory(twoflux)isoneofmanyfluxtheory, wherethetransportequationisconvertedintoamatrix differentialequationbyconsideringtheradianceatmany discreteangles • Yoonetal.(1987):7fluxes • Mudgett andRichards(1971):22fluxes • However,theseareallstillrestrictedtoonedimensional geometryandassumethattheincidentlightisalreadydiffuse • Extensivecomputercalculationisanotherdisadvantage 9 2015-04-01 DiffusionApproximation • Foralbedosa>>0.5,scatteringismuchgreaterthan absorption,thediffuseradiancetendstobealmostisotropic • Thendiffuseradiance inaseriesby 3 ⋯ , ( diffusionapproximation) where isthediffuseintensityand :thevectorflux • Thediffuseintensity equation where • 3 • 3 , itselfsatisfiesthefollowingdiffusion :diffusionparameter, :sourceofscatteredphotons 3 exp , :incidentfluxamplitude DiffusionApproximation • Effectivediffusionlength 1 1 3 • Effectiveattenuationcoefficient 1 3 • Ingeneral,thediffusionapproximationstatesthat exp exp withA+B=I0 10 2015-04-01 DiffusionApproximation • Therearedifferentsetsofvaluesfor , ,andg andtheycan beexpressedintermsofeachotherbyso‐calledsimilarity relationsgivenby 1 1 whiletildesindicatetransformedparameters • Themotiveofapplyingsimilarityrelationsisthe transformationofanisotropicscatteringintoisotropic scattering byusing =0, , 1 • Bythistransformation,computercalculationsare significantlyfacilitatedsinceonly and areneededfor characterizingopticaltissueproperties DiffusionApproximation • Fig.2.13showsthedependenceofthediffuseradianceon opticaldepthinthecaseofisotropicscatteringanddifferent albedos • Whena=0,itfollowslambert’slawofabsorption • Fora=1,theradianceapproachesanasymptoticvalue • Noticethatbelowthesurface, thediffuseintensityincreases duetothebackscattered photons 11 2015-04-01 RadiativeTransportTheory • ThedirectapplicationofEMtheoryiscomplicated • RTTdealswiththetransportoflightenergyandignoreswave phenomena(polarization,interference)ofEMT • IntheRTEapproachlightistreatedascomposedofdistinct particles(photons)propagatingthroughamedium.The modelisrestrictedtointeractionsbetweenlightparticles themselvesandisderivedbyconsideringchangesinenergy flowduetoincoming,outgoing,absorbedandemitted photonswithinaninfinitesimalvolumedV inthemedium (energybalance). • Themodelconsidersasmallpacketoflightenergydefinedby → itspositionr,directionofpropagationŝ,overatimeinterval dt,andwithpropagationspeedc TDRadiativeTransferEquation • Thechangeinenergyradiance , , ̂ isequalto thelossinenergyduetoabsorptionandscattering outofŝ(unitdirectionvector),plusthegainsin energyfromlightscatteredintotheŝ‐directed packetfromotherdirectionsandfromanylocal sourceofthelightat . • Radianceisdefinedasenergyflowperunitnormala reaperunitsolidangleperunittime. 12 2015-04-01 TDRadiativeTransferEquation • c isthespeedoflightinthetissue • ̂ , ̂ ’)isthephasefunction,representingtheprobabilityoflightwith propagationdirection ̂ ′ beingscatteredintosolidangledΩ around ̂ . → → → → → TDRadiativeTransferEquation → → → → → 13 2015-04-01 TDRadiativeTransferEquation • Severalotherimportantphysicalquantitiesbasedon thedefinitionofradiance – Photondensityordiffusephotonfluence rate(insidethe element) – Fluence Φ , / – Photonfluxor radiantfluxdensity(atitsboundary): measurableparameterandallowsRTEtobesolvedforμa andμa’respectively. DiffusionApproximation • InRTE,sixdifferentindependentvariablesdefineth eradianceatanyspatialandtemporalpoint(x,yand zfrom ,polarangle andazimuthalangle from ̂ , andt). • Bymakingappropriateassumptionsaboutthebehav iorofphotonsinascatteringmedium,thenumberof independentvariablescanbereduced. 14 2015-04-01 DiffusionApproximation • SimplifiedformofRTTat“diffusionlimit” 1. Relativetoscatteringevents,thereareveryfewabsorpti onevents(μs’>>μa) • thenumberofphotonundergoingtherandomwalkislarge • Radiancewillbecomenearlyisotropic 2. Thetimeforsubstantialphotondensitychangeismuchl ongerthanthetimetotraverseonetransportmeanfree path • Assumetissueis“macroscopicallyhomogeneous” • Over1mfp’,thefractionalchangeinphotonflux, J(r,t) <<1 DiffusionApproximation isotropic and anisotropic terms 1 3 I (r , s , t ) j (r , t ) s (r , t ) 4 4 , , ̂ with I (r , s, t ) • Byreplacing • RTEbecomes • , · , 1 3 j (r , t ) s (r , t ) 4 4 , , • FromFick’slaw, , • , · , , , 3 , , 15 2015-04-01 MeasurementStrategies “BlackBox” Optical Source ‘input’ TISSUE H(μa,μs) Detector ‘output’ H:SystemFunction • Goal:Tofindout H(μa,μs) • RequiresNon‐Staticsystem Perturba tionsineitheropticalsourceortissue MeasurementSchemes • CW(ContinuousWave)Measurement – – – – Simplestformofmeasurement Static,continuouswaveinput requiresdynamictissuepropertychanges pulseoximetry • Time‐ResolvedMeasurements – Temporalchangesinopticalsources • TimeDomainPhotonMigration(TDPM) • FrequencyDomainPhotonMigration(FDPM) • Spatially‐ResolvedMeasurement – Spatialchangesinopticalpath 16 2015-04-01 attenuation μt‐total CW(continuouswave) μt‐oxy arterial pulsatile venous(Hb‐O2) μt‐background non‐pulsatile tissue ? time μt = μa + μs’ CWExample,pulse‐oximetry pulseoximetrylocksintopulse healthyadultcalibrationaccountsfortissuescatter(μs’) ~μa‐oxy = μa‐total ‐ μa‐background typicallyat2wavelengths(660,940nm) 17 2015-04-01 TimeDomainPhotonMigration(I) Impulse Function, TimeDomainPhotonMigration(II) • Directlymeasureμa andμs fromTPSFusingDiffu sionEquation • Complicatedandexpensivedetectionsystem • ratherlowSNR TemporalPointSpreadFunction (TPSF) 18 2015-04-01 Source Continued Detector 25 mm 0 10 mm 25 t1 = 200 ps t2 = 600 ps t3 = 1000 ps t4 = 1400 ps Laser pulse Moving time gate Detected pulse t = 200 ps 0 100 200 300 400 500 600 700 t = 200 ps 800 900 1000 1100 1200 1300 1400 time (picoseconds) Source Continued Detector 25 mm 0 10 mm 25 t1 = 200 ps t2 = 600 ps t3 = 1000 ps t4 = 1400 ps Laser pulse t slope of ln -ac 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 time (picoseconds) 19 2015-04-01 FrequencyDomainPhotonMigration SOURCE DETECTED TISSUE stuffhappens ACsrc AC SRC AMPLITUDE ACdet DC DCSRC src DC DC det ACDET DET ~ TIME M = AC/DC TIME FrequencyDomainPhotonMigration 1 , · , , D 1 /[3( a s ' )] , Diffusion constant Intensity modulating the light source gives : ( r , t ) e i t ( r ) Plugging this into time dependent diffusion equation and approximating tissue as homogeneous gives the frequency domain equation: D 2 (r ) ( a i n ) (r ) S (r ) c Tromberg et al, Appl. Opt., 32(4), 607-616,1993. 20 2015-04-01 FrequencyDomainPhotonMigration Frequency-Domain Instrument Pham, Tromberg, et al., Rev. Sci. Instr., 71, 2500, (2000) Experimental Response I source light time (ns) detected light Nonlinear Least Square Fits Theoretical Response a a light scattering tissues a, s’ NIR Tissue Spectroscopy Bulk Tissue Function & Structure Spectroscopic Analysis FrequencyDomainPhotonMigration AMPLITUDE -4 4.5x10 180 PHASE 160 -4 140 -4 3.5x10 120 -4 100 -4 80 3.0x10 2.5x10 60 -4 2.0x10 PHASE (deg) AMPLITUDE (a.u.) 4.0x10 40 -4 1.5x10 20 100 200 300 400 500 600 700 FREQUENCY (MHz) 21 2015-04-01 FrequencyDomainPhotonMigration simultaneous fit AMPLITUDE -4 4.5x10 180 PHASE 160 -4 140 -4 3.5x10 120 -4 100 -4 80 3.0x10 2.5x10 60 -4 2.0x10 PHASE (deg) AMPLITUDE (a.u.) 4.0x10 40 -4 1.5x10 20 100 200 300 400 500 600 700 FREQUENCY (MHz) Monte CarloSimulations • AnumericalapproachtothesolutionoftheRTEis basedonMonteCarloSimulations • Itrunsacomputersimulationoftherandomwalkof anumberN ofphotons statisticalapproach large • Thestatisticalaccuracydependson numberofphotonsrequired time‐consuming • ItwasfirstproposedbyMetropolisandUlam in 1949 22 2015-04-01 Monte CarloSimulations • It isfollowingtheopticalpathofaphotonthroughtheturbid medium • Thedistancebetweentwocollisionsisselectedfroma logarithmicdistributionusingarandomnumbergenerated bythecomputer • Absorption:giveaweighttoeachphotonandpermanently reducingthisweightduringpropagation • Whenscatteringistooccur,anewdirectionofpropagationis chosenaccordingtoagivenphasefunctionandanother randomnumber • Theprocesscontinuesuntilthephotonescapesfromthe volumeoritsweightreachesagivencutoffvalue Monte CarloSimulations • Meieretal.(1978)andGroenhuis etal.(1983)statedthat thereare5principalstepsinMonteCarlosimulations 1. 2. 3. 4. 5. Sourcephotongeneration Pathwaygeneration Absorption Elimination Detection 1) Sourcephotongeneration – – Photonsaregeneratedatasurfaceoftheconsideredmedium Theirspatialandangulardistributioncanbefittedtoagivenlight sourcee.g.Gaussianbeam 23 2015-04-01 Monte CarloSimulations 2) Pathwaygeneration – – – – – Afteraphotongeneration,thedistancetothefirstcollisionis determined Absorbingandscatteringparticlesshouldberandomlydistributed Thus,themeanfreepathis1⁄ ,where isthedensityof particlesand istheirscatteringcross‐section Arandomnumber0 1 isgeneratedbythecomputer Thedistance tothenextcollisioniscalculatedfrom ln – Since ln 1,theaveragevalueof – Hence,ascatteringpointhasbeenobtained isindeed1⁄ Monte CarloSimulations 2) Pathwaygeneration – – Thescatteringangleisdeterminedbyasecondrandomnumber inaccordancewithacertainphasefunction(e.g.Henyey‐Greenstein phasefunction) Thecorrespondingazimuthangle ischosenas 2 where isthethirdrandomnumberbetween0and1 24 2015-04-01 Monte CarloSimulations 3) Absorption Toaccountforabsorption,aweightisattributedtoeachphoton Photonsenteringthemediumhaveweightasaunity Duetoabsorptiontheweightisreducedbyexp Alternativewayistoimplementaweightbyassigningafourth randomnumber rangingfrom0and1 – TheninsteadofassumingonlyscatteringeventsinStep2,scattering takesplaceif <a,whereaisalbedo – For >a,thephotonisabsorbedwhichisequivalenttoStep4. – – – – 4) Elimination – – – Thisstepappliedifaweighthasbeengiventoeachphoton(step3) Whenthisweightreachesacutoffvalue,thephotoniseliminated Thennewphotonislaunchedandstartsfromstep1 Monte CarloSimulations 5) Detection – Afterhavingrepeatedstep1‐4forasufficientnumberofphotons,a mapofpathwaysiscalculatedandstoredinthecomputer – Thus,statisticalstatementscanbemadeaboutthefractionofincident photonsbeingabsorbedbythemediumaswellasthespatialand angulardistributionofphotonshavingescapedfromit • In1993,Graaff etal.proposed“condensedMonteCarlo simulations” – Theresultsofearliercalculationscanbestoredandused againifneededforthesamephasefunctionbutfor differentvaluesoftheabsorptioncoefficientandalbedo – Thisreducesaconsiderableamountofcomputingtime 25 2015-04-01 InverseAdding‐DoublingMethod • In1993Prahl etal.proposed“inverseadding‐doubling” • “inverse”impliesareversaloftheusualprocessofcalculating reflectanceandtransmittancefromopticalproperties • “adding‐doubling”referstoearliertechniquesestablishedby vandeHulst (1962)andPlass etal.(1973) • Thedoublingmethodassumesthatreflectionand transmissionoflightincidentatacertainangleisknownfor onelayerofatissueslab • Thesamepropertiesforalayertwiceasthickisfoundby dividingitintotwoequalslabsandaddingthereflectionand transmissioncontributionsfromeitherslab. InverseAdding‐DoublingMethod • Thus,reflectionandtransmissionforanarbitraryslabof tissuecanbecalculatedbystartingwithathinslabwith knownproperties,e.g.asobtainedbyabsorptionandsingle scatteringmeasurements,anddoublingituntilthedesired thicknessisachieved • The addingmethodextendsthedoublingmethodto dissimilarslabsoftissue. • Withthissupplement,layeredtissueswithdifferentoptical propertiescanbesimulated,aswell. 26 2015-04-01 PolarizationEffects • Sofar,theradianceJisassumedtobeascalarand polarizationeffectsarenegligible • Inthe1980s,severalextensivestudiesweredoneon transporttheorypointingouttheimportanceofadditional polarizingeffects(agoodsummarybyIshimaru andYeh (1984)) • Herein,theradianceisreplacedbyafour‐dimensionalStokes vector,andthephasefunctionbya4× 4Müllermatrix • TheStokesvectoraccountsforallstatesofpolarization.The Müllermatrixdescribestheprobabilityofaphotontobe scatteredintoacertaindirectionatagivenpolarization • The transportequationthenbecomesamatrixintegro‐ differentialequationandiscalledavectortransportequation. Summary • InFig.2.14,theintensitydistributionsinsideaturbid mediumcalculatedwitheithermethodarecomparedwith eachother. • Becauseisotropicscatteringis assumed,ananalyticalsolution canalsobeconsideredwhichis labeled“transporttheory”. • Twodifferentalbedos,a=0.9and a=0.99,aretakenintoaccount. • TheKubelka–Munk theoryusually yieldshighervalues,whereas diffusionapproximationand MonteCarlosimulationfrequently underestimatetheintensity. 27
© Copyright 2026 Paperzz