0$.('216.,.20,7(7=$*2/(0,(/(.75,A1,
6,67(0,− 6,*5(6.23-(
97252629(789$:(1$0$.2−6,*5(
6(.&,-$III05(#,
*583$$1$/,=$1$((6
6758A(1,=9(6789$A3URI'LPLWDU.RVWRY7HKQLaNLIDNXOWHW−%LWROD
,=9(>7$-1$6758A1,27,=9(6789$A
=D YWRURWR VRYHWXYDZH QD 0$.2 6,*5( YR SUREOHPDWLNDWD ^WR VH
REUDERWXYD YR JUXSDWD VH QDSL^DQL YNXSQR WUXGD L SULWRD VLWH VH
NODVLILFLUDQLNDNRUHIHUDWL
5 GU5LVWR$aNRYVNLPU0LUNR7RGRURYVNL129$3267$3.$=$
$1$/,=$1$.86,7(956.,926/2#(1,((6
9RRYRMWUXGHL]ORCHQPHWRGRWQDVXPLUDZHQDDGPLWDQFLL06$SULPHQHW
]D SUHVPHWND QD VWUXLWH QD NXVL YUVNL YR VORCHQL ((6 .DM RYLH PUHCL NRL VH
VORCHQR]DWYRUHQL VH ]HPD SUHGYLG RGQRVRW m/n NRM SUHWVWDYXYD RGQRV SRPH_X
EURMRWQDPHURGDYQLWHNRQWXULLEURMRWQDQH]DYLVQLWHMD]OLYRPUHCDWD.RONXVH
PUHCLWH SRJROHPL L SRVORCHQL WRONX H RYRM RGQRV SRPDO 2YDD RNROQRVW VH
NRULVWLNDNRSUHGQRVWELGHM`LPHVWRGDVHUDERWLVRPDWULFDWDQDLPSHGDQFLLQD
QH]DYLVQLWH MD]OL NRMD LPD GLPHQ]LL nxn `H VH RSHULUD VR 7HYHQHQRYDWD PDWULFD
NRMD LPD GLPHQ]LL mxm L NRMD H PQRJX SRPDOD RG SUHWKRGQDWD =D REMDVQHQLH QD
PHWRGRWYRWUXGRWHGDGHQLOXVWUDWLYHQSULPHUSULNDCDQQDVOLQDVOLNLWH
GR 3RVWDSNDWD H SULPHQHWD ]D UH^DYDZH QD VWUXLWH QD NXVL YUVNL YR ((6 QD
5HSXEOLND0DNHGRQLMD
9RWDEHODWDIIHQDSUDYHQDVSRUHGEDPH_XNOVLaQLRWLSUHGORCHQLRWPHWRGRG
NDGHVHJOHGDDWJROHPLWHSUHGQRVWLQDSUHGORCHQLRWPHWRGED]LUDQQDSULPHQDWD
QD06$YRSRJOHGQDSRWUHEQRWRYUHPH]DSUHVPHWND
5 GU'UDJRVODY5DMLaL`PU0LUNR7RGRURYVNL35(767$989$:(1$
75$16)250$725,35,35(60(7.,1$.86,7(956.,92
',675,%87,91,7(05(#,
, YR RYRM WUXG H L]ORCHQ PHWRGRW QD VXPLUDZH QD DGPLWDQFLL 06$
SULPHQHW ]D SUHVPHWND QD VWUXLWH QD NXVL YUVNL YR GLVWULEXWLYQLWH PUHCL SRG
SUHWSRVWDYND SRWUR^XYDaLWH GD VH SUHWVWDYDW VR NRQVWDQWQL LPSHGDQVL 3ULWRD
SUHVPHWNLWHVHL]YHGXYDDWYRID]HQGRPHQ
0HWRGRW QD VXPLUDZH QD DGPLWDQFLL YR WUXGRW H GRSROQHW VR SUHWVWDYXYDZH
QD HOHNWURHQHUJHWVNLWH WUDQVIRUPDWRUL L QLYQRWR YOLMDQLH YR VOXaDM QD NXVL
YUVNL YR HOHNWURGLVWULEXWLYQDWD PUHCD RG UDGLMDOHQ WLS 9R WUXGRW H QDYHGHQ L
LOXVWULUDQ SULPHU NDNR HGQRSROQD ^HPD QD WHVW PUHCD D SRWRD VH GDGHQL
UH]XOWDWLWH WDEHODUQR 3ULWRD UHVSHNWLUDM`L JR SUHQRVQLRW RGQRV QD
WUDQVIRUPDWRULWH L QLYQRWR RSWRYDUXYDZH VH GRELYDDW SRWRaQL UH]XOWDWL ]D
JROHPLQDWDQDVWUXLWHQDNXVLYUVNL
5 GU$OHNVDQGDU'LQLWURYVNL35(60(7.$1$5$',-$/1,
',675,%87,91,05(#,62)$=,32'$72&,
9RWUXGRWHSULNDCDQQRYSULVWDS]DSUHVPHWNDQDVRVWRMEDWDYRUDGLMDOQLWH
GLVWULEXWLYQL PUHCL 5'0 7RM ED]LUD QD SULPHQDWD QD WHRULMDWD QD ID]L
PQRCHVWYD6RRJOHGQDIDNWRWGHNDSULPHQDWDQDRYDDWHRULMDYRSRVOHGQRYUHPHH
YRJROHPSRGHPMDVQRHGHNDREUDERWHQDWDWHPDHDNWXHOQDLRVREHQRLQWHUHVQD
,]ORCHQDWD PHWRGRORJLMD ]D SUHVPHWND QD VRVWRMEDWD YR 5'0 MD YNOXaXYD L
QHVLJXUQRVWDYRSR]QDYDZHWRQDYOH]QLWHSRGDWRFLNRMDQHPDVWDWLVWLaNDSULURGD
=D WDD FHO DYWRURW MD NRULVWL WHRULMDWD QD ID]L PQRCHVWYD L JL PRGHOLUD
QHVLJXUQLWH SRGDWRFL NDNR ID]L EURHYL NRL SUHWVWDYXYDDW VSHFLMDOHQ VOXaDM QD
ID]L PQRCHVWYD 'DGHQ H L NXV RVYUW YU] HOHPHQWLWH QD ID]L PDWHPDWLNDWD NRL
SRGRFQD VH NRULVWDW YR ID]L PHWRGRW ]D SUHVPHWND QD 5'0 D NRM YVX^QRVW
SUHWVWDYXYDID]L−YDULMDQWDQDGHWHUPLQLVWLaNLRWPHWRG]DLVWDWDQDPHQDSR]QDW
SRG QD]LYRWPHWRG VXPLUDZH QD PR`QRVWL 3UHWKRGQR QD HGHQ VRVHP HGQRVWDYHQ
SULPHU DYWRURWMDSRMDVQXYDVDPDWDSRVWDSNDQDID]L−SUHVPHWNDWD1DNUDMRW RG
WUXGRW ]D LOXVWUDFLMD QD XSRWUHEOLYRVWD QD SUHGORCHQLRW SULVWDS H GDGHQ HGHQ
UHIHUHQWHQ GLVWULEXWLYHQ VLVWHP SUH]HPHQ RG OLWHUDWXUDWD L SULNDCDQL VH
UH]XOWDWLWHRGID]L−SUHVPHWNLWHQDVRVWRMEDWDYRQHJR7LHUH]XOWDWLGRELHQLYR
UDPNLWH QD VDPR HGQD SUHVPHWND YR VHEH JL VRGUCDW VLWH PRCQL LQIRUPDFLL L
QHL]YHVQRVWLNRLSURL]OHJXYDDWRGQHVLJXUQRVWDQDSRGDWRFLWH
5 7UDMaHAHUHSQDONRYVNL%UDQNR0DWHYVNL5DGPLOD6RNRORYD(OL]DEHWD
%DGDURYVND$1$/,=$1$9135(1261$05(#$9232/2>
.,275(*,21,35('/2=,=$32-$A89$:(
9RWUXGRWHQDNXVRL]ORCHQGHORGDQDOL]LWHLUH]XOWDWLWHRG(ODERUDWRW
]D UDVSUHGHOED QD PR`QRVWD QD ((6 YR SROR^NLRW UHJLRQ VR PRCQL UH^HQLMD
L]UDERWHQYRJRGDYWRULWHQDRYRMWUXGSUL6HNWRURW]DUD]YRMLLQYHVWLFLL
QD-3(OHNWURVWRSDQVWYRQD0DNHGRQLMD
1DMQDSUHG H SULNDCDQD SRVWRMQDWD VRVWRMED VR RSWRYDUXYDZDWD QD HOHPHQ
WLWHRG((6YRSROR^NLRWUHJLRQLHREUD]ORCHQDSRWUHEDWDRGYDNYLWHDQDOL]L
3RWRDHQDNXVRRSL^DQDSULPHQHQDWDPHWRGRORJLMDLUD]JOHGXYDQLWHYDULMDQWL]D
ORNDOQRSRMDaXYDZHQD91PUHCDLQLYQLWHRVQRYQLNDUDNWHULVWLNL1DSUDYHQHL
L]ERUQDQDMSRYROQDYDULMDQWD]DSRMDaXYDZHQDPUHCDWD
5H]XOWDWLWHRGL]YU^HQLWHDQDOL]LVHSULNDCDQLYRVXEOLPLUDQDIRUPDLH
SRGHWDOQR RSL^DQR SUHGORCHQRWR UH^HQLH ]D ORNDOQRWR SRMDaXYDZH QD 91
SUHQRVQD PUHCDVRJOHGDQRYR SHULRGRW QD L]UDERWNDWD QD VSRPHQDWLRW HODERUDW
9R PH_XYUHPH VH QDSUDYHQL GRSROQLWHOQL DQDOL]L VRJOHGXYDZD L RFHQNL QD
L]YRGOLYRVWD QD VDPRWR UH^HQLH REH]EHGXYDZH NRULGRUL PH_XVHEQR YOLMDQLH VR
SRVWRMQLWH REMHNWL NRRUGLQLUDZH VR UD]QL ]DIDWL ]D UHYLWDOL]DFLMD L VO .DNR
UH]XOWDWQDWRDUH^HQHLHWRSUHGORCHQRVR(ODERUDWRWHGRSROQHWRLQDGJUDGHQR
VRQHJRYDWDSUDNWLaQDL]YRGOLYRVWLHYH`HYRID]DQDUHDOL]DFLMD
35$>$:$=$',6.86,-$
.DNYD `H ELGH SUHGQRVWD QD PHWRGRW SUHGORCHQ YR UHIHUDWRW 5 QDG
NODVLaQLWHPHWRGL]DUH^DYDZHQDNXVLWHYUVNLNRLED]LUDDWQDSULPHQDWDQD
PDWULFDWD QD LPSHGDQFLL Z YR VOXaDLWH NRJD VH UDERWL ]D JROHPL
LQWHUNRQHNFLLNRLPRCDWGDVRGUCDWLLOMDGQLFLMD]OL
'DOL H PRCQR VR SRVWDSNDWD L]ORCHQD YR UHIHUDWRW 5 ]D SUHVPHWXYDZH
QD VWUXLWH QD NXVL YUVNL YR GLVWULEXWLYQLWH PUHCL GD VH RSIDWL L VOXaDMRW
NRJD VWDWLaNLWH NDUDNWHULVWLNL QD SRWUR^XYDaLWH LPDDW SURL]YROHQ REOLN
P(U)LQ(U)$NRRYDDSRVWDSNDNRMDRSHULUDVRDNWXHOQLWHSUHQRVQLRGQRVL
QD HQHUJHWVNLWHWUDQVIRUPDWRULMDSURJODVLPH]DVRVHPDWRaQDNRONDYL VH
WRJD^JUH^NLWHYRSUHVPHWNLWHYU^HQLVRYRRELaDHQLWHSRVWRMQLPHWRGL
6R NRL SUREOHPL VH VUH`DYD DQDOLWLaDURWSODQHURW QD HGQD GLVWULEXWLYQD
PUHCD VLVWHP SUL SULELUDZHWR QD SRGORJLWH QHRKRGQL ]D LGQLWH DQDOL]L
.DNYL QHGRUHaHQRVWL L QHL]YHVQRVWL VH RSID`DDW VR ID]L−EURHYLWH L NRL
SUDNWLaQL SUREOHPL PRCDW GD VH UH^DYDDW VR SRPR^ QD PHWRGRW SUHGORCHQ
YRUHIHUDWRW5
.RMD RG YDULMDQWLWH ]D ORNDOQR SRMDaXYDZH QD YLVRNRQDSRQVNDWD PUHCD YR
SROR^NLRWUHJLRQRSL^DQLVRUHIHUDWRW5HSULIDWHQDNDNRNRQHaQDL
NRL VH QHM]LQLWH NDUDNWHULVWLNL .RL ELOH SULaLQLWH ]D QHM]LQRWR
XVYRMXYDZH
0$.('216.,.20,7(7=$*2/(0,(/(.75,A1,6,67(0,
6,*5(6.23-(
97252629(789$:(1$0$.26,*5(
3URIGU'UDJRVODY5DMLaL`6NRSMH
+ULVWDILO*UR]GDQRVNLGLSOHOLQC-3(OHNWURVWRSDQVWYRQD0DNHGRQLMD
3RGUXCQLFD(OHNWURGLVWULEXFLMD2KULG
63(&,),A1,*2',>1,752>2&,
=$',675,%87,91,05(#,
.5$7.$62'5#,1$
9RWUXGRWHRSL^DQDSRVWDSND]DSUHVPHWNDQDJRGL^QLWUR^RFL]DGLVWUL
EXWLYQD PUHCD QD SRYU^LQD VR SOR^WLQD RG HGHQ NYDGUDWHQ NLORPHWDU QDUHaHQL
VSHFLILaQL JRGL^QL WUR^RFL 3ULWRD H SUHWSRVWDYHQR GHND SRYU^LQVNDWD
JXVWLQDQDRSWRYDUXYDZHWRHNRQVWDQWQDVLWHWUDQVIRUPDWRULVUHGHQQL]RNQDSRQ
VHVRHGQDNYLQRPLQDOQLPR`QRVWLVLWHWUDQVIRUPDWRULVHQRPLQDOQRRSWRYDUHQL
VLWH QLVNRQDSRQVNL L]YRGL LPDDW HGQDNYL QDSUHaQL SUHVHFL QD ID]QLWH
VSURYRGQLFL L YR QLVNRQDSRQVNLWH L]YRGL EH] RWFHSL ]DJXEDWD QD QDSRQRW QH H
SRJROHPDRG
9U]RVQRYDQDUH]XOWDWLWHRGQDSUDYHQLWHSUHVPHWNLL]YOHaHQLVH]DNOXaRFL
^WRPRCDWGDELGDWNRULVQLSULSODQLUDZHWRLSURHNWLUDZHWRQDGLVWULEXWLYQL
PUHCLQDSRJROHPLSRYU^LQL
SUMMARY
A procedure for calculation annual expanse for a distribution network per square
kilometre is described in this paper. The suppositions are: load per square kilometre is constant,
all transformers medium/low voltage have the same ratings, all transformers have nominal
loading, all low voltage lines have the same cross section, voltage drop at each low voltage line
does not exceed 3%.
Considering results obtained some conclusions were made. They can be useful in planning
and designing distribution networks on larger areas.
.OXaQL]ERURYL3RYU^LQVNDJXVWLQDQDRSWRYDUXYDZH*RGL^QLWUR^RFL]D
GLVWULEXWLYQDPUHCD6SHFLILaQLJRGL^QLWUR^RFL]DGLVWULEXWLYQDPUHCD
929('
*RGL^QLWH WUR^RFL ]D GLVWULEXWLYQLWH PUHCL SUHWVWDYXYDDW ]QDaLWHOHQ
GHO RG JRGL^QLWH WUR^RFL ]D FHOLRW HOHNWURHQHUJHWVNL VLVWHP 3RUDGL WRD H
QHRSKRGQRSULSODQLUDZHWRSURHNWLUDZHWRLHNVSORDWDFLMDWDQDGLVWULEXWLYQLWH
PUHCLGDVHLVNRULVWDWVLWHPRCQRVWLVRNRLJRGL^QLWHWUR^RFL]DWLHPUHCLVH
VYHGXYDDWQDRSWLPDOQDYUHGQRVW
9R RYRM WUXG H REMDVQHWD SRVWDSND ]D SUHVPHWND QD JRGL^QLWH WUR^RFL ]D
GLVWULEXWLYQD PUHCD SR HGLQLFD SRYU^LQD QDUHaHQL VSHFLILaQL JRGL^QL
WUR^RFL]DGLVWULEXWLYQDPUHCD7LHWUR^RFL]DYLVDWRGSRYH`HSDUDPHWUL=DGD
VH VRJOHGD YOLMDQLHWR QD RGGHOQL SDUDPHWUL QDSUDYHQL VH VRRGYHWQL SUHVPHWNL QD
PRGHORW3ULWRDHSUHWSRVWDYHQRGHND
− RSWRYDUXYDZHWRHUDPQRPHUQRUDVSUHGHOHQRSRSRYU^LQDWD
− HGQDWUDQVIRUPDWRUVNDVWDQLFDVUHGHQQL]RNQDSRQQDSRMXYDSRWUR^XYDaL
QDSRYU^LQDYRYLGQDNYDGUDW
− VLWHWUDQVIRUPDWRUVNLVWDQLFDVUHGHQQL]RNQDSRQLPDDWWUDQVIRUPDWRUL
VRHGQDNYLQRPLQDOQLPR`QRVWL
− VLWH QLVNRQDSRQVNL L]YRGL QD HGQD WUDQVIRUPDWRUVND VWDQLFD VH VR
PH_XVHEQRHGQDNYLGROCLQLLQDSUHaQLSUHVHFL
9R SUHVPHWNLWH QH VH ]HPHQL SUHGYLG WUR^RFLWH ]D SULSDGQLWH VUHGQRQD
SRQVNL YRGRYL 3UL SUHVPHWNLWH VH NRULVWHQL FHQLWH ]D QLVNRQDSRQVNL YRGRYL L
WUDQVIRUPDWRUVNL VWDQLFL ^WR VH NRULVWDW YR -3 ìElektrostopanstvo QD
0DNHGRQLMDí
=D SRWUHELWH QD RYD LVWUDCXYDZH H VRRGYHWQR PRGLILFLUDQ SR]QDWLRW
PDWHPDWLaNLPRGHO]DSUHVPHWNDQDJRGL^QLWUR^RFL]DGLVWULEXWLYQDPUHCD6R
QHJRYDSRPR^VHGRELHQLUH]XOWDWL]DSRJROHPEURMUD]OLaQLVOXaDL9U]RVQRYDQD
GRELHQLWH UH]XOWDWL VH L]YOHaHQL ]DNOXaRFL ^WR PRCDW GD VH NRULVWDW YR
SUDNWLNDWD
,19(67,&,21,752>2&,=$1,6.21$3216.,92'29,
,QYHVWLFLRQLWH WUR^RFL ]D HGHQ QLVNRQDSRQVNL YRG PRCDW GD VH SULNDCDW
VRVWDYHQL RG GYD GHOD =D YRGRYLWH VR HGQDNYR QDSRQVNR QLYR L VR SULEOLCQR
HGQDNYL XVORYL QD JUDGED L]QRVRW QD SUYLRW GHO RG WUR^RFLWH QH H ]DYLVHQ RG
SOR^WLQDWD QD QDSUHaQLRW SUHVHN QD ID]QLWH VSURYRGQLFL QD YRGRW =D YRG VR
HGLQLaQD GROCLQD WRM GHO QD WUR^RFLWH `H JR R]QDaLPH VR d. 3UL QDYHGHQLWH
XVORYLYWRULRWGHOQDWUR^RFLWHHSURSRUFLRQDOHQQDSOR^WLQDWDQDQDSUHaQLRW
SUHVHNQDID]QLWHVSURYRGQLFLQDYRGRW=DYRGVRHGLQLaQDGROCLQDVRRGYHWQLRW
NRHILFLHQW QD SURSRUFLRQDOQRVW `H JR R]QDaXYDPH VR h. 6R WRD YNXSQLWH
LQYHVWLFLRQL WUR^RFL ]D YRG VR GROCLQD l L SOR^WLQD QD QDSUHaQLRW SUHVHN QD
VSURYRGQLFLWH F PRCDWGDVHQDSL^DWYRYLG
E
YRG
= ( d + h ⋅ F ) ⋅ l.
9UHGQRVWLWH QD SDUDPHWULWH d L h RG UDYHQNDWD VH RSUHGHOXYDDW YU]
RVQRYDQDUDVSRORCLYLWHSRGDWRFL]DYNXSQLWHWUR^RFLSULL]JUDGEDQDYRGRYL9R
RYRM WUXG VH NRULVWHQL SRGDWRFL ]D YNXSQLWH LQYHVWLFLRQL WUR^RFL ]D QHNRL
QLVNRQDSRQVNLNDEHOVNLYRGRYLVRVSURYRGQLFLRGDOXPLQLXPGDGHQLYRWDEHODI
7DEHODI ,QYHVWLFLL]DQLVNRQDSRQVNLNDEHOVNLYRGRYL
6WDQGDUGQDR]QDND
QDNDEHORW
PP 41 A 4×16 0,6/1 kV
PP 41 A 4×25 0,6/1 kV
PP 41 A 4×50 0,6/1 kV
PP 41 A 4×95 0,6/1 kV
PP 41 A 4×150 0,6/1 kV
&HQD]DWULID]HQNDEHOVNLYRGYRGHQDUL]DPHWDU
)DEULaQD 0DQLSX >WLWQLFL
FHQD
ODWLYQL RG39+ ,VNRS 3RODJDZH 9NXSQR
WUR^RFL
9U]RVQRYDQDSRGDWRFLWH]DYNXSQLWHLQYHVWLFLRQLWUR^RFL]D NDEHOVNLWH
YRGRYL VR UD]OLaQD SOR^WLQD QD QDSUHaQLRW SUHVHN QD ID]QLWH VSURYRGQLFL
GDGHQL YR WDEHODWD I, VR SULPHQD QD PHWRGRW SR]QDW SRG LPHWR PHWRG QD QDMPDOL
NYDGUDWLVHRSUHGHOHQLYUHGQRVWLWH
d = 398 GHQDULm
L
h = 4,7 GHQDULm⋅mm2
,19(67,&,21,752>2&,=$75$16)250$7256.,
67$1,&,kV/kV
9NXSQLWH LQYHVWLFLRQL WUR^RFL ]D HGQD WUDQVIRUPDWRUVND VWDQLFD
VUHGHQQL]RN QDSRQ PRCDW GD VH SULNDCDW NDNR VXPD RG GYD GHOD (GQLRW GHO JR
VRaLQXYDDW WUR^RFLWH ^WR VH QH]DYLVQL RG QRPLQDOQDWD PR`QRVW QD YJUDGHQLRW
WUDQVIRUPDWRU 7RM GHO QD WUR^RFLWH `H JR R]QDaLPH VR d' . 'UXJLRW GHO VH
WUR^RFLWH aLM L]QRV H SURSRUFLRQDOHQ QD QRPLQDOQDWD PR`QRVW QD YJUDGHQLRW
WUDQVIRUPDWRU S . $NR VRRGYHWQLRW NRHILFLHQW QD SURSRUFLRQDOQRVW JR
R]QDaLPH VR h' , ]D YNXSQLWH LQYHVWLFLRQL WUR^RFL ]D HGQD WUDQVIRUPDWRUVND
VWDQLFDPRCHGDVHQDSL^H
QRP
E
WV
= d '+ h'⋅S
QRP
..
9UHGQRVWDQDSDUDPHWULWH d' L h' VHRSUHGHOXYDDWVRSULPHQDQDPHWRGRWQD
QDMPDOL NYDGUDWL 3UL WRD VH NRULVWDW SRGDWRFLWH ]D YNXSQLWH LQYHVWLFLRQL WUR
^RFL]DWUDQVIRUPDWRUVNLVWDQLFL kV/kV,VRUD]OLaQLQRPLQDOQLPR`QRVWL
QDLQVWDOLUDQLWHWUDQVIRUPDWRUL7DNYLSRGDWRFLVHGDGHQLYRWDEHODII3RGDWR
FLWH VH RGQHVXYDDWQDWUDQVIRUPDWRUVNLWHVWDQLFL^WR VH PRQWDCQR EHWRQVNL VR
WULVUHGQRQDSRQVNL`HOLLQLVNRQDSRQVNDWDEODLRVXPQLVNRQDSRQVNLL]YRGL
6RNRULVWHZHQDSRGDWRFLWHRGWDEHODWDII VHRSUHGHOHQLYUHGRVWLWH
d ′ = 1740288,125 GHQDUL
L
h = 535,75 GHQDULkVA.
7DEHODII ,QYHVWLFLL]DWUDQVIRUPDWRUVNLVWDQLFLkV/kV
S QD *UDGHCQL =D]HP
WUDQV UDERWL MXYDa
IRUP
GHQ
GHQ
kVA
QRP
,]YRGQD
`HOLMD
kV
GHQ
7UDIR 1LVNRQD 7UDQV 0RQ =DYU^
`HOLMD SRQVND IRUPD WDCD QLUD 9NXSQR
WDEOD
WRU
ERWL
kV
GHQ
GHQ
GHQ
GHQ
GHQ
GHQ
*2',>1,752>2&,=$75$16)250$7256.$67$1,&$
,35,3$'1$7$1,6.21$3216.$05(#$
*RGL^QLWHWUR^RFL]DHGHQQLVNRQDSRQVNLYRG D
YRG
PRCDWGDVHSULNDCDW
NDNRVXPDRGGYDYLGDWUR^RFL[]3UYLRWYLGWUR^RFL D ′ QH]DYLVLRGQDaLQRW
QD NRULVWHZHWR QD YRGRW L QHJRYLRW L]QRV H SURSRUFLRQDOHQ QD YNXSQLWH
LQYHVWLFLRQL WUR^RFL ]D YRGRW 6RRGYHWQLRW NRHILFLHQW QD SURSRUFLRQDOQRVW
WH SURVHaQDWD JRGL^QD WUR^NRYQD NYRWD `H JR R]QDaXYDPH VR pY 2YRM YLG
WUR^RFL JR VRaLQXYDDW WUR^RFLWH ]D DPRUWL]DFLMD WHNRYQR L LQYHVWLFLRQR
RGUCXYDZHSULGRQHVLSUHPLL]DRVLJXUXYDZHUD]QLaOHQDULQLLGHO]DSODWLWHQD
SHUVRQDORW7XNDQHYOHJXYDDWHYHQWXDOQLWHWUR^RFL]DRWSODWDQDNUHGLWLWH DNR
WLHVHNRULVWHQL]DJUDGEDQDYRGRWQRYOHJXYDDWNDPDWLWHQDWLHNUHGLWL6SRUHG
WRD]DRYRMYLGWUR^RFLPRCHGDVHQDSL^H
YRG
D′ = p ⋅ E
YRG
Y
YRG
= p ⋅ (d + h ⋅ F) ⋅ l Y
9WRULRW YLG QD JRGL^QLWH WUR^RFL D′′ H ]DYLVHQ RG QDaLQRW QD
NRULVWHZHWRQDYRGRW3RWRaQRWRMHHGQDNRYQDJRGL^QLWHWUR^RFL]D]DJXEHQDWD
HOHNWULaQDPR`QRVWLHQHUJLMDYRYRGRW
1HNDVR ∆PY JLR]QDaLPH]DJXELWHQDPR`QRVWYRYRGRWSULJRGL^QRWRYUYQR
RSWRYDUXYDZH7RJD^JRGL^QLWH]DJXELQDHOHNWULaQDHQHUJLMDYR YRGRW PRCDW GD
VHSUHVPHWDDWVRUDYHQNDWD
YRG
∆W = ∆P ⋅ τ Y
NDGH^WRτHWQYUHPHQD]DJXEL^WRVHRSUHGHOXYDVRUDYHQNDWD
8760
τ=
∫ ∆P(t ) ⋅ dt
0
∆P
.
Y
1HND VR c MD R]QDaLPH SURVHaQDWD PHVHaQD FHQD QD L]JXEHQLRW kW SUL YUYQD
HOHNWULaQDPR`QRVWYRYRGRWDVR c MDR]QDaLPHSURVHaQDWDFHQDQDkWh L]JXEHQD
HOHNWULaQD HQHUJLMD YR YRGRW 6PHWDM`L GHND YUYQDWD PR`QRVW H HGQDNYD YR VLWH
PHVHFLRGJRGLQDWD]DYWRULRWYLGQDJRGL^QLWHWUR^RFLPRCHPHGDQDSL^HPH
P
H
D′′ = 12 ⋅ P ⋅ c + P ⋅ τ ⋅ c = P ⋅ (12 ⋅ c + τ ⋅ c )
YRG
Y
P
Y
H
Y
P
H
,PDM`LJLSUHGYLGUDYHQNLWHLSRYRYHGXYDZH
C = 12 ⋅ c + τ ⋅ c P
H
]DYNXSQLWHJRGL^QLWUR^RFL]DYRGRWVOHGXYD
D
YRG
= D′
YRG
+ D ′′ = p ⋅ ( d + h ⋅ F ) ⋅ l + ∆P ⋅ C.
YRG
Y
Y
3UHWSRVWDYXYDPH GHND VR GLVWULEXWLYQDWD PUHCD VH QDSRMXYD SRGUDaMH VR
NRQVWDQWQD SRYU^LQVND JXVWLQD QD SULYLGQRWR RSWRYDUXYDZH 3UL YUYQRWR
RSWRYDUXYDZH QD PUHCDWD WDD JXVWLQD `H MD R]QDaLPH VR σ 3ULWRD VHNRMD
WUDQVIRUPDWRUVND VWDQLFD VUHGHQQL]RN QDSRQ QDSRMXYD SRGUDaMH VR SRYU^LQD YR
YLGQDNYDGUDWLVHQDR_DYRQHJRYRWRVUHGL^WH2VYHQWRD`HSUHWSRVWDYLPHGHND
RG WUDQVIRUPDWRUVNDWD VWDQLFD L]OHJXYDDW n HGQDNYL QLVNRQDSRQVNL YRGRYL LOL
L]YRGL L GHND VLWH YRGRYL VH HGQDNYR RSWRYDUHQL 2SWRYDUXYDZHWR QD VHNRM RG
QLVNRQDSRQVNLWH YRGRYL H VR OLQHDUQR UDVWHaND UDVSUHGHOED QD RSWRYDUXYDZHWR
$NR YNXSQDWD DNWLYQD RWSRUQRVW QD HGHQ RG L]YRGLWH H R D VWUXMDWD QD QHJRYLRW
SRaHWRN H I1 WRJD^ VSRUHG [2] VWUDQLFD ]DJXEDWD QD DNWLYQDWD PR`QRVW YR
YRGRWH16
, ⋅ R ⋅ I1 6RWRDUDYHQNDWDPRCHGDVHQDSL^HYRYLG
2
D
YRG
= p ⋅ ( d + h ⋅ F ) ⋅ l + 1,6 ⋅ R ⋅ I12 ⋅ C.
Y
,PDM`L SUHGYLG GHND VR F H R]QDaHQD SOR^WLQDWD QD QDSUHaQLRW SUHVHN QD
HGHQRGID]QLWHVSURYRGQLFLQDYRGRWDNRVR ρ VHR]QDaLVSHFLILaQDWDRWSRUQRVW
QD PDWHULMDORW RG NRM VSURYRGQLFLWH VH QDSUDYHQL RG UDYHQNDWD ]D YNXSQLWH
JRGL^QLWUR^RFLQDHGHQYRGVOHGXYD
D
YRG
= p ⋅ ( d + h ⋅ F ) ⋅ l + 1,6 ⋅ ρ ⋅ C ⋅ I12 ⋅
Y
l
F
*RGL^QLWH WUR^RFL ]D VLWH n QLVNRQDSRQVNL YRGRYL L]YRGL QD HGQD
WUDQVIRUPDWRUVNDVWDQLFDVUHGHQQL]RNQDSRQ`HELGDW
D
YRGRYL
= n ⋅ p ⋅ (d + h ⋅ F ) ⋅ l + 1,6 ⋅ n ⋅ ρ ⋅ C ⋅ I12 ⋅
Y
l
F
$NRYNXSQLWHJRGL^QLWUR^RFL]DVLWH n YRGRYL VH GLIHUHQFLUDDW SR F L
GRELHQLRWL]UD]VHSULUDPQLQDQXOD`HVHGRELHUDYHQNDWD
p ⋅ h − 1,6 ⋅ ρ ⋅ C ⋅ I12 ⋅
Y
1
= 0.
F2
2GUDYHQNDWD]DRSWLPDOQLRWQDSUHaHQSUHVHNVOHGXYD
F
RSW
1,6 ⋅ ρ ⋅ C
p ⋅h
= I1 ⋅
Y
RGQRVQRRSWLPDOQDWDJXVWLQDQDVWUXMDL]QHVXYD
J
RSW
=
I1
p ⋅h
.
=
1,6 ⋅ ρ ⋅ C
F
Y
RSW
.DNR ^WR PRCH GD VH ]DEHOHCL RG UDYHQNDWD RSWLPDOQDWD JXVWLQD QD
VWUXMDWDHLVWD]DVLWHQLVNRQDSRQVNLL]YRGLNRLVHL]YHGHQLVRVSURYRGQLFLRGLVW
PDWHULMDO QH]DYLVQR RG QLYQLRW EURM L QDSUHaHQ SUHVHN 7DD JODYQR ]DYLVL RG
HNRQRPVNLWHSDUDPHWUL
$QDORJQRQDSUHWKRGQRWRLYNXSQLWHJRGL^QLWUR^RFL]DWUDQVIRUPDWRUVND
VWDQLFD VUHGHQQL]RN QDSRQ PRCDW GD VH SUHWVWDYDW NDNR VXPD RG GYD GHOD 'HORW
^WR QH ]DYLVL RG UHCLPRW QD NRULVWHZHWR QD WUDQVIRUPDWRUVNDWD VWDQLFD VH
GRELYD NRJD VR SURVHaQDWD JRGL^QD WUR^NRYQD NYRWD ]D RYRM YLG RSUHPD p VH
SRPQRCDWYNXSQLWHLQYHVWLFLRQLWUR^RFL]DWUDQVIRUPDWRUVNDWDVWDQLFDGDGHQL
VR UDYHQNDWD 9WRULRW GHO JR VRaLQXYDDW JRGL^QLWH WUR^RFL ]D ]DJXEHQDWD
HQHUJLMD YR WUDQVIRUPDWRURW 7DND ]D YNXSQLWH JRGL^QL WUR^RFL ]D HGQD
WUDQVIRUPDWRUVNDVWDQLFDPRCHGDVHQDSL^H
WV
D
WV
=p
WV
⋅ ( d '+ h'⋅S
QRP
) + ∆P
WU
⋅C NDGH ^WR VR ∆P H R]QDaHQD ]DJXEDWD QD DNWLYQDWD PR`QRVW YR WUDQVIRUPDWRURW
SULYUYQRWRRSWRYDUXYDZH
9U] RVQRYD QD UDYHQNLWH L YNXSQLWH JRGL^QL WUR^RFL ]D HGQD
WUDQVIRUPDWRUVND VWDQLFD VUHGHQQL]RN QDSRQ L ]D SULSDGQDWD QLVNRQDSRQVND
PUHCDPRCDWGDVHQDSL^DWYRYLG
WU
D1 = n ⋅ p ⋅ ( d + h ⋅ F ) ⋅ l + 1,6 ⋅ ρ ⋅ n ⋅ C ⋅ I12 ⋅
Y
l
+p
F
WV
⋅ ( d '+ h'⋅S
QRP
) + ∆P
WU
⋅C NDGH^WR
l=
1 S
⋅
σ
2
QRP
HSRORYLQDRGGROCLQDWDQDSRYU^LQDWDYRYLGQDNYDGUDW^WRVHQDSRMXYDRGHGHQ
WUDQVIRUPDWRU VUHGHQQL]RN QDSRQ RGQRVQR GROCLQD QD QLVNRQDSRQVNL L]YRG
GRGHNDVWUXMDWDQDSRaHWRNRWQDQLVNRQDSRQVNLRWL]YRGHRSUHGHOHQDVRUDYHQNDWD
I1 =
S
3 ⋅ n ⋅U
QRP
QRP
9.831,*2',>1,752>2&,=$75$16)250$7256.,
67$1,&,65('(11,=2.1$321,35,3$'1,7(
1,6.21$3216.,05(#,1$(',1,A1$3295>,1$
'DQDETXGXYDPHHGQRSRGUDaMHaLMDJXVWLQDQDSULYLGQRWRRSWRYDUXYDZHH σ 1D SRGUDaMHWR QHND LPD N WUDQVIRUPDWRUVNL VWDQLFL VUHGHQQL]RN QDSRQ
3OR^WLQDWD QD SRGUDaMHWR QHND H A 9NXSQLWH JRGL^QL WUR^RFL ]D VLWH
WUDQVIRUPDWRUVNLVWDQLFLLVRRGYHWQLWHQLVNRQDSRQVNLYRGRYLQDFHORWRSRGUDaMH
`HELGDW
l
D = N ⋅ n ⋅ p ⋅ (d + h ⋅ F ) ⋅ l + 1,6 ⋅ ρ ⋅ n ⋅ C ⋅ I12 ⋅ + p
F
Y
WV
⋅ (d '+ h'⋅S
QRP
) + ∆P
WU
⋅ C
3UHWSRVWDYXYDPH GHND VLWH WUDQVIRUPDWRUL VH RSWRYDUHQL VR QRPLQDOQD
PR`QRVW7RJD^YNXSQRWRRSWRYDUXYDZHQDFHODWDSRYU^LQDHHGQDNYRQDVXPDWDQD
QRPLQDOQLWHPR`QRVWLQDVLWHWUDQVIRUPDWRULLPRCHGDVHQDSL^H
N ⋅S
QRP
= A ⋅σ RGNDGH^WRVOHGXYD
N = A⋅
S
QRP
σ
$NR L]UD]RW ]D N RG UDYHQNDWD L L]UD]RW ]D I1 RG UDYHQNDWD VH
]DPHQDW YRUDYHQNDWD SR GHOHZHWR VR A ]D VSHFLILaQLWH JRGL^QL WUR^RFL
QD GLVWULEXWLYQD PUHCD WH JRGL^QL WUR^RFL ]D GLVWULEXWLYQD PUHCD QD
SRYU^LQDVRSOR^WLQDHGHQNYDGUDWHQNLORPHWDUGRELYDPH
D′ =
σ
S
C⋅ρ ⋅l ⋅S2
⋅ n ⋅ p ⋅ (d + h ⋅ F ) ⋅ l + 1,6 ⋅
+p
3⋅U 2 ⋅ n ⋅ F
QRP
Y
QRP
QRP
WV
⋅ (d '+ h'⋅S
QRP
) + ∆P
WU
⋅ C .
5(=8/7$7,2'35(60(7.,7(
.RULVWHM`LJRUD]YLHQLRWPDWHPDWLaNLPRGHOQDSUDYHQLVHSUHVPHWNLVRFHO
GDVHLVWUDCLYOLMDQLHWRQDRGGHOQLJROHPLQLYU]VSHFLILaQLWHJRGL^QLWUR^RFL
]DGLVWULEXWLYQDPUHCD
2VYHQ WLH ^WR VH SRUDQR QDYHGHQLWH NRULVWHQL VH L VOHGQLYH SDUDPHWUL
U
= 400 V ρ = 0,030 Ω / m / mm 2 p = 0,12 p = 0,15 9VX^QRVW YR QDSUDYHQLWH SUHVPHWNL QDPHVWR GD VH NRULVWDW SRGDWRFLWH ]D
SOR^WLQDWD QD QDSUHaQLRW SUHVHN QD NDEHORW L VSHFLILaQDWD RWSRUQRVW QD
PDWHULMDORWRGNRM^WRWRMHQDSUDYHQNRULVWHQHNDWDOR^NLRWSRGDWRN]DDNWLYQD
RWSRUQRVWQDNDEHORWSRHGLQLFDGROCLQD
3UHVPHWNLWHQDVSHFLILaQLJRGL^QLWUR^RFLVHQDSUDYHQL]HPDM`L
Á UD]OLaQLSRYU^LQVNLJXVWLQLQDSULYLGQRWRYUYQRRSWRYDUXYDZH
Á UD]OLaQLQRPLQDOQLPR`QRVWLQDWUDQVIRUPDWRULWHVUHGHQQL]RNQDSRQ
QRP
Y
WV
Á UD]OLaQL FHQL ]D kW YUYQD PR`QRVW UD]OLaQL FHQL ]D kWh ]DJXEHQD
HOHNWULaQDHQHUJLMDYRPUHCDWDLUD]OLaQLìvremiwaQD]DJXELí
− ]DJXEDWDQDQDSRQRWYRQLVNRQDSRQVNLWHL]YRGLQHVPHWDM`LJLRWFHSLWH
GDQHHSRJROHPDRG
2SWLPDOQLWH JXVWLQL QD VWUXMD SUHVPHWDQL VR UDYHQNDWD ]D UD]QL
YUHGQRVWLQDC, VHGDGHQLYRWDEHODWDIII.
7DEHODIII 2SWLPDOQLJXVWLQLQDVWUXMD]DUD]QLYUHGQRVWLQDC
C GHQDUL(kW⋅JRGLQD)
2
2
2
2SWLPDOQDJXVWLQDQDVWUXMD 1,533 A/mm 1,084 A/mm 0,766 A/mm 0,626 A/mm2
3RUDGL IDNWRW ^WR SUL SURPHQD QD C VH PHQXYD L RSWLPDOQDWD JXVWLQD QD
VWUXMDSULSUHVPHWNLWHQDVSHFLILaQLJRGL^QLWUR^RFL]DGLVWULEXWLYQDPUHCD
EURMRWQDQLVNRQDSRQVNLWHL]YRGLSRWUDQVIRUPDWRULEURMRWQDNDEOLSRL]YRGH
RSUHGHOXYDQVRFHOGDVHSRVWLJQHSULEOLCQRHGQDNYDJXVWLQDQDVWUXMDYRL]YRGLWH
EOLVND GR RSWLPDOQDWD QH]DYLVQR RG QRPLQDOQDWD PR`QRVW QD WUDQVIRUPDWRURW
VUHGHQQL]RNQDSRQ
3UHVPHWDQLWH YUHGQRVWL QD VSHFLILaQLWH JRGL^QL WUR^RFL ]D GLVWULEX
WLYQD PUHCD VH SULNDCDQL YR WDEHOLWH IV L V 9R WDEHOLWH IV L V ]D VHNRMD
QRPLQDOQD PR`QRVW QD WUDQVIRUPDWRU VUHGHQQL]RN QDSRQ H GDGHQ EURMRW QD
QLVNRQDSRQVNLWHL]YRGLLEURMRWQDNDEOLWHSRL]YRG3ULWRD×R]QDaXYDGHND
LPD QLVNRQDSRQVNL L]YRGL SR WUDQVIRUPDWRU L GHND VHNRM L]YRG H L]YHGHQ VR SR
HGHQ NDEHO aLM QDSUHaHQ SUHVHN QD ID]QLWH CLOL H mm2 GRGHND VR ×× H
R]QDaHQRGHNDLPDQLVNRQDSRQVNLL]YRGLSRWUDQVIRUPDWRULGHNDVHNRMRGQLYH
L]YHGHQ VR SR GYD NDEOD aLM QDSUHaHQ SUHVHN QD ID]QLWH CLOL H mm2 $NR YR
SROHWR SUHGYLGHQR ]D VSHFLILaQLWH JRGL^QL WUR^RFL VWRL FUWLaND WRD R]QDaXYD
GHND VR L]EUDQLWH SDUDPHWUL ]DJXEDWD QD QDSRQRW YR QLVNRQDSRQVNLWH L]YRGL EH]
RWFHSLHSRJROHPDRG
5H]XOWDWLWHYRWDEHODWDIVVHRGQHVXYDDWQDPUHCLWHVRUD]OLaQLQRPLQDOQL
PR`QRVWL QD WUDQVIRUPDWRUL 1R EURMRW QD QLVNRQDSRQVNLWH L]YRGL L QLYQLRW
QDSUHaHQSUHVHNNDMWUDQVIRUPDWRUVNLWHVWDQLFLVRUD]OLaQLQRPLQDOQLPR`QRVWL
QD WUDQVIRUPDWRULWH VH L]ELUDQL WDND ^WR JXVWLQDWD QD VWUXMDWD GD ELGH
SULEOLCQR HGQDNYD L PQRJX GD QH VH UD]OLNXYD RG RSWLPDOQDWD 9R WDEHODWD IV VH
SULNDCDQL GYH JUXSL UH]XOWDWL (GQLWH VH GRELHQL ]HPDM`L GHND H C=1
GHQDULkW⋅JRGLQD GRGHND GUXJLWH VH GRELHQL ]HPDM`L GHND H C=2
GHQDULkW⋅JRGLQD 6SRUHG RFHQNDWD QD DYWRULWH YR QD^LWH XVORYL YUHGQRVWD QD
RYRMSDUDPHWDUHRNROXGHQDULkW⋅JRGLQD1RUHDOQRHGDVHRaHNXYDSRUDVW
NDNRQDFHQLWH]DHOHNWULaQDWDPR`QRVWLHQHUJLMDWDNDLQDYUHPHWRQD]DJXELWH
3RUDGL WRD VH SULNDCDQL L UH]XOWDWLWH ]D C=2GHQDULkW⋅JRGLQD 7RD H
QDSUDYHQR VR FHO GD VH VRJOHGD GDOL SUL WLH XVORYL GRD_D GR SURPHQL YR
SULRULWHWRWQDWUDQVIRUPDWRULWH
5H]XOWDWLWHYRWDEHODWDVVHRGQHVXYDDWQDPUHCLWHVRUD]OLaQLQRPLQDOQL
PR`QRVWLQDWUDQVIRUPDWRULSUL^WREURMRWQDQLVNRQDSRQVNLWHL]YRGLLQLYQLRW
QDSUHaHQ SUHVHN VH L]ELUDQL WDND ^WR JXVWLQDWD QD VWUXMDWD GD ELGH SULEOLCQR
HGQDNYD ]D VHNRMD JUXSD LVSLWXYDQL VOXaDL 3ULNDCDQL VH GYD VOXaDMD 9R SUYLRW
VOXaDMJXVWLQLWHQDVWUXLWHVHGRVWDSRJROHPLRGRSWLPDOQDWDDYRYWRULRWWLHVH
PDONXSRPDOLRGRSWLPDOQDWD
7DEHODIV 6SHFLILaQLJRGL^QLWUR^RFL]DGLVWULEXWLYQLPUHCL
VRPH_XVHEQRHGQDNYLJXVWLQLQDVWUXMDEOLVNLGRRSWLPDOQLWH
YRLOMDGLGHQDULkm2
σ
kVA/
km2
C=GHQDULkW⋅JRGLQD
C=2GHQDULkW⋅JRGLQD
1RPLQDOQDPR`QRVWQDWUDQVIRUPDW 1RPLQDOQDPR`QRVWQDWUDQVIRUPDW
kVA kVA kVA kVA kVA kVA kVA kVA
%URMLSUHVHNQDL]YRGLWH
%URMLSUHVHNQDL]YRGLWH
×
×
×
×
×
×
× ××
2
3RVWLJQDWDJXVWLQDQDVWUXMDA/mm ) 3RVWLJQDWDJXVWLQDQDVWUXMDA/mm2)
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
7DEHODV 6SHFLILaQLJRGL^QLWUR^RFL]DGLVWULEXWLYQLPUHCL
VRUD]OLaQLJXVWLQLQDVWUXMDYRLOMDGLGHQDULkm2
σ
kVA/
km2
C=GHQDULkW⋅JRGLQD
C=1GHQDULkW⋅JRGLQD
1RPLQDOQDPR`QRVWQDWUDQVIRUPDW 1RPLQDOQDPR`QRVWQDWUDQVIRUPDW
kVA kVA kVA kVA kVA kVA kVA kVA
%URMLSUHVHNQDL]YRGLWH
%URMLSUHVHNQDL]YRGLWH
×
×
×
×
×
×
× ××
2
3RVWLJQDWDJXVWLQDQDVWUXMDA/mm ) 3RVWLJQDWDJXVWLQDQDVWUXMDA/mm2)
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
=$./8A2&,
,]ORCHQLRW PHWRG H XSRWUHEHQ ]D SUHVPHWND QD VSHFLILaQL JRGL^QL
WUR^RFL ]D GLVWULEXWLYQL PUHCL SUL UD]OLaQL SRYU^LQVNL JXVWLQL QD
RSWRYDUXYDZHWR L VR UD]OLaQL WHKQLaNL L HNRQRPVNL SDUDPHWUL 'RELHQLWH
UH]XOWDWLRYR]PRCXYDDWGDVHL]YOHaDWQHNRONXRS^WL]DNOXaRFL
2GWDEHOLWHIV L V VHJOHGDGHNDRGGYHGLVWULEXWLYQLPUHCLVRHGQDNYL
QRPLQDOQL PR`QRVWL QD WUDQVIRUPDWRULWH VUHGHQQL]RN QDSRQ L VR
HGQDNYL VLWH RVWDQDWL SDUDPHWUL RVYHQ QDSUHaQLWH SUHVHFL QD QLVNRQD
SRQVNLWHL]YRGLSRQLVNLVSHFLILaQLJRGL^QLWUR^RFLLPDPUHCDWDNDM
NRMD JXVWLQDWD QD VWUXMDWD YR QLVNRQDSRQVNLWH L]YRGL SRPDONX VH
UD]OLNXYD RG RSWLPDOQDWD 1R L SUL JROHPD UHODWLYQD SURPHQD QD
JXVWLQLWHQDVWUXLWHNDNYD^WRHSULNDCDQDYRWDEHODWDVQHPRUDGDVH
MDYDWJROHPLUHODWLYQLSURPHQLQDVSHFLILaQLWHJRGL^QLWUR^RFLLDNR
HPRCQDSURPHQDYRSULRULWHWRWQDWUDQVIRUPDWRULWH
2G VLWH GLVWULEXWLYQL PUHCL NDM NRL JXVWLQLWH QD VWUXLWH YR QLVNRQD
SRQVNLWH L]YRGL VH PH_XVHEQR HGQDNYL L EOLVNL GR RSWLPDOQDWD SUL
SRYU^LQVNL JXVWLQL QD RSWRYDUXYDZHWR SRJROHPL RG kVA/km2 QDM
PDOL VSHFLILaQL JRGL^QL WUR^RFL LPDDW PUHCLWH YR NRL VH NRULVWDW
WUDQVIRUPDWRULVUHGHQQL]RNQDSRQVRQRPLQDOQDPR`QRVWRGkVA
=D VHNRMD SRYU^LQVND JXVWLQD QD RSWRYDUXYDZHWR L ]D JXVWLQL QD VWUXMD
EOLVNL GR RSWLPDOQLWH SRVWRL QRPLQDOQD PR`QRVW QD WUDQVIRUPDWRU
VUHGHQQL]RN QDSRQ VR NRM VH SRVWLJQXYDDW QDMPDOL VSHFLILaQL JRGL^QL
WUR^RFL ]D GLVWULEXWLYQDWD PUHCD 1R ]DVOXCXYD GD VH QDJODVL GHND YR
PQRJXVOXaDLUHODWLYQRHPDODUD]OLNDWD SRPH_X VSHFLILaQLWH JRGL^QL
WUR^RFL]DPUHCLVRUD]OLaQL WUDQVIRUPDWRUL 9R QHNRL VOXaDL NDNRY
^WRHHGQLRWRGVOXaDLWHSULNDCDQYRWDEHODWDV]DQLHGQDSRYU^LQVND
JXVWLQD QD RSWRYDUXYDZHWR PUHCLWH VR WUDQVIRUPDWRUL VR QRPLQDOQD
PR`QRVWRGkVA QHPDDWSRPDOLVSHFLILaQLWUR^RFLRGPUHCLWH YR
NRLVHNRULVWDWWUDQVIRUPDWRULVRGUXJLQRPLQDOQLPR`QRVWL
2GWDEHODWDIV VHJOHGDGHNDSULUHODWLYQRJROHPDSURPHQDQDYUHGQRVWD
QD C RG 1GHQDULkW⋅JRGLQD QD GHQDULkW⋅JRGLQD QDVWDQX
YDDW ]QDaLWHOQL SURPHQL QD VSHFLILaQLWH JRGL^QL WUR^RFL ]D RGGHOQL
GLVWULEXWLYQL PUHCL 0H_XWRD PDOL VH SURPHQLWH YR SULRULWHWRW QD
WUDQVIRUPDWRULWH
%/$*2'$51267
$YWRULWH PX ]DEODJRGDUXYDDW QD SURI GU 5LVWR $aNRYVNL ]D SRPR^WD SUL
UHDOL]DFLMDQDGHORGLVWUDCXYDZHWR
/,7(5$785$
[1]
[2]
5$aNRYVNL3UHQRVQL L GLVWULEXWLYQL VLVWHPL 8QLYHU]LWHW ì6Y .LULO L
0HWRGLMí, Elektrotehni~ki fakultet, Skopje 1995 godina.
'5DMLaL`9RYHG YR GLVWULEXWLYQL HOHNWURHQHUJHWVNL VLVWHPL 8QLYHU]L
WHWì6Y.LULOL0HWRGLMí, Elektrotehni~ki fakultet, Skopje 1995 godina.
0$.('216.,.20,7(7=$*2/(0,(/(.75,A1,6,67(0,
6,*5(6.23-(
97252629(789$:(1$0$.26,*5(
GU'UDJRVODY5DMLaL`6NRSMH
PU0LUNR7RGRURYVNLGLSOHOLQC,&(,SUL0$18−6NRSMH
35(767$989$:(1$75$16)250$725,
35,35(60(7.$1$.86,7(956.,
92',675,%87,91,7(05(#,
.5$7.$62'5#,1$
(GQD RG QDMHILNDVQLWH SRVWDSNL ]D SUHVPHWND QD VWUXL L QDSRQL SUL NXVL
YUVNLLOLVSRHYLVR]HPMDYRPUHCLVRUDGLMDOQDWRSROR^NDVWUXNWXUDHSRVWDSNDWD
YRNRMD VHNRULVWLPHWRGRWQDVXPLUDZHDGPLWDQFLL0H_XWRDYRSRVWRMQDWD OLWH
UDWXUD QH H RSL^DQR NDNR GD VH SUHWVWDYXYDDW HOHNWURQHUJHWVNL WUDQVIRUPDWRUL
]DSUHWVWDYDWDGDELGHVRRGYHWQD]DQDYHGHQLRWPHWRG9RRYRMWUXGHL]ORCHQHGHQ
SULVWDS]DGRELYDZHWDNYDSUHWVWDYD2GOLNDWDQDRYRMSULVWDSH^WRJRXYDCXYDQH
VDPR YLVWLQVNLRW SUHQRVHQ RGQRV QD WUDQVIRUPDWRURW WXNX L QDaLQRW QD
VRHGLQXYDZH QD QHJRYLWH QDPRWNL .RULVWHM`L JR WRM PRGHO QDSUDYHQL VH SRYH`H
SUHVPHWNL QD WHVW PUHCL 3ULNDCDQLRW GHO RG GRELHQLWH UH]XOWDWL JR LOXVWULUD
YOLMDQLHWRQDSUHQRVQLRWRGQRVYU]JROHPLQDWDQDVWUXMDWDQDNXVDWDYUVND
,VWLRW QDaLQ QD SUHWVWDYXYDZH WUDQVIRUPDWRUL PRCH GD VH NRULVWL L SUL
SUHVPHWNDQDQDSRQLLVWUXLYRUHCLPLWHEH]NXVLYUVNL
SUMMARY
The admittance summation method is one of the most efficient for calculation short
circuits currents and voltages in radial networks. However, in the existing literature one can not
find any explanation how to represent power transformers in that approach. A suitable
transformer model is developed and described in this paper. The model takes into account actual
transformer ratio and type of connections of its windings. A large number of calculations were
made using that approach. As an illustration, some of the results for single fault currents are
presented in this paper. According to the results it is not correct to ignore the influence of the
transformer ratio on short circuit currents.
The same transformer model can be used in calculation voltages and currents by
admittance summation method in radial networks without short circuits.
.OXaQL]ERURYL.XVLYUVNL6SRHYLVR]HPMD5DGLMDOQDPUHCD3RGUHGXYDZHQD
HOHPHQWLQDUDGLMDOQDPUHCD
929('
=DSUHVPHWNDQDVWUXLWHLQDSRQLWHSULNXVLYUVNLLVSRHYLVR]HPMDQDNXVR
JUH^NL SRVWRMDW QHNRONX PHWRGL 3RYH`HWR RG QLY NRULVWDW VLPHWULaQL NRPSR
QHQWL 3RMDYD QD HYWLQL L EU]L GLJLWDOQL NRPSMXWHUL RYR]PRCLOD VÚ SRaHVWR
SUHVPHWNLWH QD UHCLPLWH QD GLVWULEXWLYQLWH PUHCL GD VH L]YHGXYDDW YR ID]HQ
GRPHQ7RDYDCLNDNR]DVWDFLRQDUQLWHUHCLPLEH]JUH^NDWDNDL]DUHCLPLWHVR
JUH^ND7DNYLRWSULVWDSRYR]PRCXYDXYDCXYDZHQDQHVLPHWULMDRGNDNRYLGDHYLG
2VREHQRHSULNODGHQ]DSUHVPHWNDQDVWUXLLQDSRQLSULSRYH`HNUDWQLJUH^NL
9U]RVQRYDQDPHWRGLWHUD]YLHQLYRWUXGRYLWH[1] L[2]YRWUXGRW[3] HL]OR
CHQ HGHQ RG SRQRYLWH SULVWDSL ]D SUHVPHWND QD NXVLWH YUVNL YR GLVWULEXWLYQLWH
PUHCL 9R SULVWDSRW VH NRULVWL PHWRGRW SR]QDW SRG LPHWR PHWRG QD VXPLUDZH
VWUXL ^WR VSD_D PH_X QDMHILNDVQLWH PHWRGL ]D DQDOL]D QD GLVWULEXWLYQL PUHCL
7RDRVREHQRYDCL]DDQDOL]DQDVWDFLRQDUQLUHCLPLEH]JUH^ND0H_XWRDYR[3,4]
VH SUHGODJD SUL SUHVPHWNL QD NXVLWH YUVNL YR GLVWULEXWLYQLWH PUHCL
SRWUR^XYDaLWHGDVHSUHWVWDYXYDDWVRNRQVWDQWQLLPSHGDQFLLWHLPSHGDQFLL^WR
QH ]DYLVDW RG QDSRQRW 7RNPX YR WDNYLWH VOXaDL PHWRGRW QD VXPLUDZH VWUXL LPD
]QDaLWHOQR SROR^L NDUDNWHULVWLNL RG PHWRGRW QD VXPLUDZH DGPLWDQFLL. 7RD ELO
GRYROHQPRWLYGDVHSULVWDSLNRQUD]YLYDZHQRYDSRVWDSND]DSUHVPHWNDQDQDSRQL
LVWUXLSULNXVLYUVNLYRGLVWULEXWLYQLPUHCLYRNRMDELVHNRULVWHOPHWRGRWQD
VXPLUDZHDGPLWDQFLL[6,7](GQDWDNYDSRVWDSNDHRSL^DQDYRWUXGRW[8]1HM]LQLWH
SUHGQRVWL YR RGQRV QD SRVWDSNDWD L]ORCHQD YR WUXGRYLWH [3,4] VH GDYD SRWRaQL
UH]XOWDWL SUHVPHWNLWH VH L]YHGXYDDW ]D SRNXVR YUHPH QHPD SRWUHED VHNRMD NXVD
YUVND LOL ]HPHQ VSRM GD VH WUHWLUD NDNR GRSROQLWHOQD NRQWXUD QD SRHGQRVWDYHQ
QDaLQ VH ]HPDDW SUHGYLG QDSUHaQLWH HOHPHQWL QD PUHCDWD NDNR ^WR VH
SRWUR^XYDaLLNRQGHQ]DWRUVNLEDWHULL
'D SRGYOHaHPH GHND L YR [3] L YR [8] SUHVPHWNLWH VH L]YHGXYDDW YR ID]HQ
GRPHQ'YDWDVHSULPHQOLYLQDSURL]YROHQEURMHGQRYUHPHQLNXVLYUVNLRGNDNRYL
GD H YLG QD NRL L GD ELOR ORNDFLL 3RNUDM WRD QD VHNRH PHVWR QD NXVD YUVND
LPSHGDQFLMDWDSUHNXNRMDQDVWDSLODNXVDWDYUVNDPRCHGDLPDSURL]YROQDYUHGQRVW
9R SUHWKRGQLWH WUXGRYL QH H REMDVQHWR NDNR GD VH SUHWVWDYXYDDW HOHNWUR
HQHUJHWVNL WUDQVIRUPDWRUL NRJD ]D SUHVPHWNLWH VH NRULVWL PHWRGRW QD VXPLUDZH
DGPLWDQFLL 7RD H SUHGPHW QD RYRM WUXG 1R SUHG GD ELGH REMDVQHWR NDNR GD VH
SUHWVWDYXYDDWWUDQVIRUPDWRULWHQDMQDSUHG`HELGHGDGHQNXVRVYUWYU]SRVWDSNDWD
]DSUHVPHWNDQDNXVLWHYUVNLL]ORCHQDYRWUXGRW[8]
2695795=3267$3.$7$,=/2#(1$92758'27[8]
3RVWDSNDWD H UD]YLHQD SUHWSRVWDYXYDM`L GHND HOHPHQWLWH L MD]OLWH QD UDGL
MDOQDWDPUHCDVHSRGUHGHQLVSRUHGSUDYLODWDRG[5]
6RFHOGDVHRYR]PRCLDQDOL]DQDQHXUDPQRWHCHQLLQHVLPHWULaQLPUHCLVH
NRULVWLWULID]QDSUHWVWDYDNDNRQDHOHPHQWLWHQDPUHCDWDWDNDLQDSRWUR^XYD
aLWH0DWULFDWDQDNRPSOHNVQLWHLPSHGDQFLLQDWULID]QLRWHOHPHQWk H
ZS ak ,b,c
ZS aa
k
ba
= ZS k
ZS ca
k
ZS ab
k
bb
ZS k
ZS cb
k
ZS ac
k
bc
ZS k
ZS cc
k
7ULID]HQ SRWUR^XYDa NDM MD]RORW k VH SUHWVWDYXYD VR PDWULFDWD QD
NRPSOHNVQLWHDGPLWDQFLL
L ak ,b,c
L aa
k
ba
= L k
L ca
k
L ab
k
bb
Lk
L cb
k
L ac
k
bc
Lk
L cc
k
.DNRYLGDHYLGJUH^NDNDMMD]RORWk PRCHGDVHSUHWVWDYLVRHGQDPDWULFDQD
NRPSOHNVQL DGPLWDQFLL RG WUHW UHG YF ak , b, c (OHPHQWLWH QD WDD PDWULFD PRCDW GD
LPDDWSURL]YROQDYUHGQRVW=DUD]OLaQLYLGRYLNXVLYUVNLVRRGYHWQLWHPDWULFLQD
DGPLWDQFLLQDJUDQNDWDQDJUH^NDVHGDGHQLYR[8]7DEHODIHSUH]HPHQDRGWRMWUXG
7DEHODI0DWULFLQDDGPLWDQFLL]DUD]OLaQLYLGRYLJUH^NL[8]
9LGQDJUH^ND
a
b
YF
YF
YF
YF ak ,b,c
Yg
7ULID]QDVR]HPMD
a
b
YF
0DWULFDQDDGPLWDQFLL
c
2Y + Y
g
F
YF
=
−
Y
F
3Y F + Y g
−YF
YF
b
YF
YF ak ,b,c
YF
YF ak ,b,c
Yg
'YRID]QDVR]HPMD
b
YF
=
2Y F + Y g
0
0
0
0
YF +Yg
−YF
0
−YF
Y F + Y g
c
YF
YF
'YRID]QD
a
2 − 1 − 1
YF
=
− 1 2 − 1
3
− 1 − 1 2
c
YF
a
−YF
−YF
2Y F + Y g
c
7ULID]QD
a
−YF
2Y F + Y g
−YF
b
YF ak ,b,c
0
0
0
YF
=
0
1 − 1
2
0 − 1
1
c
YF
(GQRID]QD
YF ak ,b,c
Y F
= 0
0
0 0
0 0
0 0
=DGDVHRYR]PRCLHILNDVQRL]YHGXYDZHQDSUHVPHWNLWHNRQVHNRMMD]ROk VH
SULGUXCXYDDW SR GYH PDWULFL YL ak , b, c L YN ak , b, c 0DWULFDWD YL ak , b, c VH GRELYD NDNR
VXPD QD VLWH PDWULFL QD QDSUHaQLWH WULID]QL HOHPHQWL ^WR VH SULGUXCHQL NRQ
MD]RORW k 9R WDD VXPD VH YNOXaXYDDW NDNR PDWULFDWD QD LPSHGDQFLLWH VR NRMD H
SUHWVWDYHQ SRWUR^XYDaRW NDM MD]RORW k WDND L PDWULFDWD QD JUDQNDWD QD JUH^ND
GRNRONXNDMWRMMD]ROVHMDYLODJUH^ND
0DWULFDWD YN ak , b, c HYVX^QRVWPDWULFDQDNRPSOHNVQLHNYLYDOHQWQLDGPLWDQ
FLL QD GHORW QD UDGLMDOQDWD WULID]QD PUHCD ^WR VH QDSRMXYD SUHNX MD]RORW k
]HPDM`LJLWXNDSUHGYLGVLWHQDSUHaQLDGPLWDQFLLNDMWRMMD]RO
=D SROHVQR UD]ELUDZH QD QDWDPR^QDWD SRVWDSND H NRULVQR GD JL QDYHGHPH
RVQRYQLWH RGOLNL QD VSRPQDWRWR SRGUHGXYDZH 9R SURFHVRW QD SRGUHGXYDZHWR QD
VHNRM QDSUHaHQ HOHPHQW L QD VHNRM MD]RO PX VH GRGHOXYD LQGHNV 3ULWRD ]D VHNRM
HOHPHQW VH GHILQLUD SRaHWHQ MD]RO L NUDHQ MD]RO 3RaHWHQ H RQRM RG MD]OLWH QD
HOHPHQWRWaLMSDWGRQDSRMQLRWMD]RORGQRVQRMD]RORWVRSR]QDWQDSRQSRPRGXO L
ID]HQ DJRO QH JR VRGUCL VDPLRW HOHPHQW 'UXJLRW MD]RO H NUDHQ ,QGHNVRW QD
SRaHWQLRW MD]RO H VHNRJD^ SRPDO RG LQGHNVRW QD NUDMQLRW MD]RO ,QGHNVRW QD
NUDMQLRW MD]RO H HGQDNRY VR LQGHNVRW QD HOHPHQWRW $NR UDGLMDOQDWD PUHCD LPD n
QDSUHaQL HOHPHQWL QLP LP VH GRGHOXYDDW LQGHNVL RG HGHQ GR n 1D MD]OLWH LP VH
GRGHOXYDDWLQGHNVLRGQXODGRn
3UHVPHWNDWDQDVWUXLWHLQDSRQLWHVHVRVWRLRGWULaHNRUL9RSUYLRWaHNRU
VHSUHVPHWXYDDWPDWULFLWH YL ak , b, c k = 1,, n 3RWRDVH]HPD
,c
a ,b ,c
;
YN ak ,(bSRaHWQD
YUHGQRVW ) = YL k
k = 1, , n.
9R YWRULRW aHNRU VH SUHVPHWXYDDW PDWULFLWH YN ak , b, c ( k = n,,1) 7RD VH
L]YHGXYD VR REUDERWND HOHPHQW SR HOHPHQW WUJQXYDM`L RG HOHPHQWRW VR QDMJROHP
LQGHNV3ULREUDERWNDQDHOHPHQWRWkMDRSUHGHOXYDPHSRPR^QDWDPDWULFD
(
D ak ,b,c = E + ZS ak ,b,c ⋅ YN ak ,b,c
)−1 NDGH^WRVREHR]QDaHQDHGLQLaQDPDWULFDRGWUHWUHG3RWRDSUHVPHWXYDPH
b ,c
a ,b ,c
a ,b,c
⋅ D ak ,b,c ,
YN ai(,QRYD
YUHGQRVW ) = YN i ( VWDUD YUHGQRVW ) + YN k
NDGH ^WR i H LQGHNV QD SRaHWQLRW MD]RO QD HOHPHQWRW k 'ROQDWD R]QDND ìVWDUD
YUHGQRVWí VH NRULVWL NDNR VNXVHQD LQIRUPDFLMD QDPHVWR ]ERURYLWH ìpred
REUDERWNDWD QD HOHPHQWRW kí $QDORJQR R]QDNDWD ìQRYD YUHGQRVWí VH NRULVWL
QDPHVWR]ERURYLWHìpo REUDERWNDWDQDHOHPHQWRWkí
9RWUHWLRWaHNRUVHSUHVPHWXYDDWQDSRQLWHQDMD]OLWH7RDVHL]YHGXYDSUHNX
SURFHV YR NRM SDN VH REUDERWXYD HOHPHQW SR HOHPHQW QR RYRMSDW VH WUJQXYD RG
HOHPHQWRW VR LQGHNV HGQDNRY QD HGLQLFD 3UL REUDERWND QD HOHPHQWRW k VH
RSUHGHOXYDQDSRQRWQDQHJRYLRWNUDHQMD]ROaLM^WRLQGHNVHSDNk
U ak ,b,c = D ak ,b,c ⋅ U ai ,b,c NDGH ^WR i H SRaHWHQ MD]RO QD HOHPHQWRW k D D ak , b, c H VRRGYHWQD SRPR^QD PDWULFD
RSUHGHOHQDYRYWRULRWaHNRU
6R SR]QDWL QDSRQL QD MD]OLWH QH H WH^NR GD VH RSUHGHODW VWUXLWH QD
HOHPHQWLWH6WUXMDWDYRHOHPHQWRWk H
I ak ,b,c = YN ak ,b,c ⋅ U ak ,b,c $NRJUH^NDWDQDVWDQDODNDMMD]RORWmVWUXMDWDQDJUH^NDWDVHSUHVPHWXYDVR
UDYHQNDWD
I am,b,c = YF am,b,c ⋅ U am,b,c .
35(767$989$:(1$75$16)250$725,
.DNR ^WR YH`H EH^H QDYHGHQR YR SUHWKRGQRWR SRJODYMH YR RSL^DQDWD
SRVWDSND ]D SUHVPHWND QD VWUXL L QDSRQL SUL NXVLWH YUVNL VH UDERWL YR ID]HQ
GRPHQ3RUDGLWRDHQHRSKRGQRGDVHUDVSRODJDVRPRGHOQDWUDQVIRUPDWRUYRID]HQ
GRPHQ , QH VDPR WRD 0RGHORW WUHED GD H SULNODGHQ ]D SULPHQD QD PHWRGRW QD
VXPLUDZH DGPLWDQFLL 3UL UD]YLYDZH QD WDNRY PRGHO `H WUJQHPH RG PRGHORW
L]ORCHQYR[9]NRMVRRGYHWQR`HJRPRGLILFLUDPH'REUDWDVWUDQDQDWRMSULVWDSH
^WRNDNRRVQRYDJRLPDPRGHORWQDWUDQVIRUPDWRUYRVLPHWULaQLNRPSRQHQWLNRM
HHGQRVWDYHQLGREURSR]QDW
,]YHGXYDZHWR QD PRGHORW QD WUDQVIRUPDWRU YR ID]HQ GRPHQ `H JR
GHPRQVWULUDPH ]HPDM`L NDNR SULPHU WUDQVIRUPDWRU VR VSUHJD Yd5 6R DQDORJQD
SRVWDSNDPRCHGDVHGRMGHGRPRGHOQDWUDQVIRUPDWRUVRNDNYDLGDHVSUHJD
(NYLYDOHQWQLWH^HPLQDHOHNWURHQHUJHWVNLWUDQVIRUPDWRUVRVSUHJDYd5 ]D
GLUHNWHQLQYHU]HQLQXOWLVLVWHPVHSULNDCDQLQDVOLNLWHDELYVRRGYHWQR
I (p1)
U (p1)
Yk
E (p1)
I (p2)
I (s1)
m(1):1
E (s1)
U (s1)
D=DGLUHNWHQUHGRVOHG
U (p2)
Yk
E (p2)
m(2 ):1
I (s2)
E (s2)
U (s2)
E=DLQYHU]HQUHGRVOHG
Y=DQXOWLUHGRVOHG
6OLND(NYLYDOHQWQL^HPLQDHOHNWURHQHUJHWVNLWUDQVIRUPDWRU
1DVOLNDWDVR Y k HR]QDaHQDDGPLWDQFLMDWDQDNXVDWDYUVNDQDWUDQVIRUPD
WRURW D VR E( ) LQGXFLUDQ QDSRQ *ROHPLQLWH SULGUXCHQL ]D SULPDUQDWD QDPRWND
LPDDW GROHQ LQGHNV p D JROHPLQLWH SULGUXCHQL ]D VHNXQGDUQDWD QDPRWND LPDDW
GROHQ LQGHNV s =D RYRM VOXaDM NRPSOHNVQLWH SUHQRVQL RGQRVL VH GHILQLUDQL VR
VOHGQLYHUDYHQVWYD
m(1) = 3 ⋅
Np
Ns
( )
m(2) = m(1) *
⋅e
j5
π
6
NDGH^WR VR Np L Ns VH R]QDaHQL EURHYLWH QD QDYLYNLWH QD SULPDUQDWD L
VHNXQGDUQDWD QDPRWND VRRGYHWQR 'D QDJODVLPH GHND ]D WUDQVIRUPDWRUL VR
UD]OLaQL VSUHJL NRPSOHNVQLRW SUHQRVHQ RGQRV m(1) QHPD HGQDNYL YUHGQRVWL $NR
VSUHJDWDHYd5 DUJXPHQWRWQD m(1) H 5 ⋅
π
NDNR^WRHYR9RVOXaDMQDVSUHJDYd11
6
π
3UDYLORWRVSRUHGNRHVHRSUHGHOXYDDUJXPHQWRWQD m(1) H
6
VRVHPDHGQRVWDYQRVSUHCQLRWEURMVHSRPQRCXYDVRπ,VWRWRSUDYLORYDCLL]D
GUXJLWH YLGRYL VSUHJL =D PRGXORW QD m(1) YDCL VOHGQRYR ]D VSUHJD Yy L Dd H
DUJXPHQWRW`HELGH11 ⋅
HGQDNRYQD N p N s ]DVSUHJDYd HHGQDNRY QD 3 ⋅ N p N s D]DVSUHJDDy HHGQDNRYQD
3 ⋅ Ns =D JROHPLQLWH RG HNYLYDOHQWQLWH ^HPL SULNDCDQL QD VOLNDWD YDCDW
VOHGQLYHUDYHQNL
Á ]DGLUHNWHQUHGRVOHG
Np
(1)
(1)
U p = Ep +
I (p1)
Yk
U (s1) = E (s1) ;
;
E (p1) = m(1) ⋅ E (s1) I (s1) = m(2) ⋅ I (p1) Á ]DLQYHU]HQUHGRVOHG
(2 )
(2 )
U p = Ep +
I (p2)
Yk
;
U (s2) = E (s2) ;
I (s2 ) = m(1) ⋅ I (p2) E (p2) = m(2) E (s2) ;
Á ]DQXOWLUHGRVOHG
I (p0 ) = Y k ⋅ U (p0) I (s0 ) = 0 2GUDYHQNLWHVHGRELYD
I (p1) = Y k ⋅ U (p1) − m(1) ⋅ Y k ⋅ U (s1) DRGLVOHGXYD
I (s1) = m(2) ⋅ Y k ⋅ U (p1) − m2 ⋅ Y k ⋅ U (s1) 1DWDPXRGUDYHQNLWHVHGRELYD
I (p2 ) = Y k ⋅ U (p2) − m(2) ⋅ Y k ⋅ U (s2) DRGLVOHGXYD
I (s2 ) = m(1) ⋅ Y k ⋅ U (p2) − m2 ⋅ Y k ⋅ U (s1) 5DYHQNLWH RG GR IRUPLUDDW HGHQ VLVWHP UDYHQNL ^WR PRCH GD VH
QDSL^HYRPDWULaQDIRUPDQDVOHGQLRYQDaLQ
I (p0) Y k
(1)
I p 0
I (2) 0
p =
I (s0) 0
(1) 0
Is
I (2) 0
s
0
0
0
Yk
0
0
Yk
0
0
m(2) ⋅ Y k
0
m(1) ⋅ Y k
0
0
(1)
0 − m ⋅Y k
0
0
0
0
2
0 − m ⋅Y k
0
0
(0)
U p
(1)
U
p
(2)
(
− m ⋅ Y k U p2)
⋅ (0) 0
U s
U (1)
0
s
− m2 ⋅ Y k U (2)
s
0
0
$NR ]D QD]QDaHQLWH EORNRYL QD PDWULFLWH RG PDWULaQDWD UDYHQND VH
YRYHGDWVRRGYHWQLR]QDNLWDDPRCHGDVHQDSL^HYRYLG
I 0p,1, 2
0,1, 2 =
I s
Y 2 0,1, 2 U 0p,1, 2
⋅
Y 4 0,1, 2 U 0s ,1, 2
I 0p,1, 2 = Y10,1,2 ⋅ U 0p,1,2 + Y 2 0,1,2 ⋅ U 0s ,1,2
I 0s ,1, 2 = Y 30,1,2 ⋅ U 0p,1, 2 + Y 4 0,1,2 ⋅ U 0s ,1,2 Y10,1, 2
0,1, 2
Y 3
LOL
1D^LRWLQWHUHVHGDQDMGHPHQDaLQNDNRSULSR]QDWDDGPLWDQFLMDSULNOXaHQD
QDVHNXQGDURWQDWUDQVIRUPDWRURWGDMDRSUHGHOLPHHNYLYDOHQWQDWDDGPLWDQFLMDQD
SULPDUQDWD VWUDQD 1HND HNYLYDOHQWQDWD DGPLWDQFLMD SULNOXaHQD QD VHNXQGDURW H
YN 0s ,1,2 7RJD^PRCHGDVHQDSL^H
I 0s ,1, 2 = YN 0s ,1,2 ⋅ U 0s ,1,2 LRGLVOHGXYD
(
U 0s ,1, 2 = YN 0s ,1, 2 − Y 40,1,2
)−1 ⋅ Y 30,1,2 ⋅ U 0p,1,2 3RWRDRGLVHGRELYD
(
(
I 0p,1, 2 = Y10,1,2 + Y 20,1,2 ⋅ YN 0s ,1, 2 − Y 40,1,2
)−1 ⋅ Y 30,1,2 ) ⋅ U 0p,1,2 RGNDGH^WR]DEDUDQDWDHNYLYDOHQWQDDGPLWDQFLMDQDSULPDUQDWDVWUDQDVOHGXYD
(
YN 0p,1,2 = Y10,1, 2 + Y 20,1,2 ⋅ YN 0s ,1,2 − Y 40,1,2
)−1 ⋅ Y 30,1,2 .DNR^WRHSR]QDWR[10]HGQDPDWULFDRGGRPHQRWQDVLPHWULaQLNRPSRQHQWL
PRCH GD VH WUDQVIRUPLUD YR ID]HQ GRPHQ DNR PDWULaQR VH SRPQRCL RGOHYR VR
PDWULFDWD T sim. LRGGHVQRVR (T sim. ) NDGH^WRH
−1
1 1 1
1 2
T sim. = ⋅ 1 a a a = e j 2π / 3 3
1 a a2
7DNDVHGRELYD
(
)−1 (
)−1 (
)−1 (
)−1 Y1a , b, c = T sim. ⋅ Y10,1,2 ⋅ T sim.
Y 2a , b, c = T sim. ⋅ Y 20,1,2 ⋅ T sim.
Y 3a , b, c = T sim. ⋅ Y 30,1,2 ⋅ T sim.
Y 4a , b, c = T sim. ⋅ Y 40,1,2 ⋅ T sim.
(
YN as , b, c = T sim. ⋅ YN 0s ,1,2 ⋅ T sim.
)−1 2VYHQWRDH
U ap, b, c = T sim ⋅ U 0p,1,2 1DWRMQDaLQRGUDYHQNDWDVHGRELYDUDYHQNDWD
(
U as , b, c = YN as , b, c − Y 4a , b, c
)−1 ⋅ Y 3a,b,c ⋅U ap,b,c DRGUDYHQNDWDVHGRELYDUDYHQNDWD
(
YN ap, b, c = Y1a , b, c + Y 2 a , b, c ⋅ YN as , b, c − Y 4a , b, c
)−1 ⋅ Y 3a,b,c 1DNXVR GD SRYWRULPH NDNR VH SRVWDSXYD NRJD YR SURFHVRW QD REUDERWND
HOHPHQW SR HOHPHQW VH GRMGH GR HOHPHQWRW ^WR H WUDQVIRUPDWRU 5D]OLNXYDPH GYD
VOXaDMD .DNR SUY QHND JR VPHWDPH VOXaDMRW NRJD REUDERWNDWD H RG HOHPHQW VR
SRJROHPLQGHNVNRQHOHPHQWVRSRPDOLQGHNV7DNRYVOXaDMVHMDYXYDYRSURFHVRWQD
RSUHGHOXYDZH HNYLYDOHQWQL DGPLWDQFLL 9R WRM VOXaDM NRJD QD UHG GRMGH GD VH
REUDERWXYDWUDQVIRUPDWRUSUHWKRGQRYH`HHRSUHGHOHQDHNYLYDOHQWQDWDDGPLWDQ
FLMD QD PUHCDWD ^WR VH QDSRMXYD SUHNX QHJRYDWD VHNXQGDUQD VWUDQD 7RJD^ VR
SRPR^QDUDYHQNDWDVHRSUHGHOXYDHNYLYDOHQWQDWDDGPLWDQFLMDQDSULPDUQDWD
VWUDQD QD WUDQVIRUPDWRURW 9R YWRULRW VOXaDM REUDERWNDWD QD HOHPHQWLWH QD
PUHCDWD H RG HOHPHQW VR SRPDO LQGHNV NRQ HOHPHQW VR SRJROHP LQGHNV 7DNRY H
UHGRVOHGRWQDREUDERWNDWDQDJUDQNLWHSULRSUHGHOXYDZHQDSRQLQDQLYQLWHNUDMQL
MD]OL 3ULWRD NRJD GRMGH QD UHG GD VH REUDERWXYD HOHPHQW ^WR SUHWVWDYXYD
WUDQVIRUPDWRUSUHWKRGQRYH`HHRSUHGHOHQQDSRQRWQDQHJRYDWDSULPDUQDVWUDQDL
QDSRQRWQDQHJRYDWDVHNXQGDUQDVWUDQDHGQRVWDYQRVHRSUHGHOXYDVRUDYHQNDWD
5(=8/7$7,2'35(60(7.,7(
6R FHOGDVHLOXVWULUDDWHIHNWLWHRGSULPHQDWD QD L]ORCHQLRW PHWRG WXND
`H ELGDW SULNDCDQL UH]XOWDWLWH RG SUHVPHWNLWH QD VWUXLWH SUL WULID]QD NXVD
YUVNDQDVRELUQLFLWHRGPUHCDWDSULNDCDQDQDVOLNDWD
0R`QRVWDQDWULID]QDWDNXVDYUVNDQDVRELUQLFLWHHMVA
7UDQVIRUPDWRURW T1 JL SRYU]XYD PUHCLWH VR QRPLQDOQL QDSRQL kV L
kV 1HJRYDWD QRPLQDOQD PR`QRVW H MVA 1DSRQRW QD NXVDWD YUVND H 6SUHJDWDQDQDPRWNLWHHYd5=DJXELWHQDDNWLYQDWDPR`QRVWSRUDGLRSWRYDUXYDZH
L]QHVXYDDWkW
7UDQVIRUPDWRURW T2 JL SRYU]XYD PUHCLWH VR QRPLQDOQL QDSRQL kV L
kV 1HJRYDWD QRPLQDOQD PR`QRVW H kVA 1DSRQRW QD NXVDWD YUVND H 6SUHJDWDQDQDPRWNLWHHDy5=DJXELWHQDDNWLYQDWDPR`QRVWSRUDGLRSWRYDUXYDZH
L]QHVXYDDWkW
9RGRWSRPH_XVRELUQLFLWHLHVRQRPLQDOHQQDSRQkV1HJRYLWHID]QL
VSURYRGQLFLVHL]YHGHQLVRMDCLZDRGDOXaHO'ROCLQDWDQDYRGRWHkm 9R
SULPHURWHVPHWDQRGHNDNRPSOHNVQDWDLPSHGDQFLMD QDYRGRW H (5,4960 + j3,6000) Ω 1D VOLNDWD QH VH SULNDCDQL GUXJLWH VUHGQRQDSRQVNL YRGRYL ^WR VH
QDSRMXYDDWRGVRELUQLFLWH=HPHQRHGHNDYNXSQRWR RSWRYDUXYDZH QD WLH YRGRYL
L]QHVXYD MVA, SUL IDNWRU QD PR`QRVW ,VWR WDND VH VPHWD GHND RG
VRELUQLFLWHVHQDSRMXYDDWLGUXJLWUDQVIRUPDWRUVNLVWDQLFLVUHGHQQL]RNQDSRQ
9RSULPHURWH]HPHQRGHNDQLYQDWDSULYLGQDPR`QRVWL]QHVXYDMVASULIDNWRU
QDPR`QRVW
3UHVPHWNLWH QD VWUXMDWD SUL WULID]QD NXVD YUVND VH QDSUDYHQL ]D UD]OLaQL
YUHGQRVWL QD SUHQRVQLWH RGQRVL QD WUDQVIRUPDWRULWH 5H]XOWDWLWH VH GDGHQL YR
WDEHODWD II 9R WDEHODWD II VH UD]OLNXYDQL GYD VOXaDMD EH] RSWRYDUXYDZH L VR
RSWRYDUXYDZH 9R SUYLRW VOXaDM VLWH SRWUR^XYDaL VH LJQRULUDQL 9R YWRULRW
VOXaDMSRWUR^XYDaLWHQDVUHGHQQDSRQVHSUHWVWDYHQLVRVRRGYHWQLDGPLWDQFLL
((VLVWHP
7
7
6OLND(GQRSROQD^HPDQDWHVWPUHCDWD
7DEHODII 5H]XOWDWLRGSUHVPHWNLWH
0RGXOQDSUHQRVHQRGQRVQD
WUDQVIRUPDWRU
T1
T2
6WUXMDQDWULID]QDNXVDYUVNDQD
VRELUQLFLWH
%H]RSWRYDUXYDZH 6RRSWRYDUXYDZH
A
A
A
A
A
A
A
A
A
A
A
A
A
A
2G SULNDCDQLWH UH]XOWDWL SURL]OHJXYD GHND UD]OLNLWH SRPH_X VWUXLWH QD
NXVLWHYUVNLGRELHQL]DUD]OLaQLXVORYLPRCDWGDELGDW]QDaDMQL7DNDQDSULPHU
]D VOXaDM NRJD QH VH XYDCXYD RSWRYDUXYDZHWR L SUHQRVQLWH RGQRVL VH L
VWUXMDWD SUL WULID]QD NXVD YUVND H ]D SRJROHPD RWNRONX NRJD
RSWRYDUXYDZHWRVHXYDCXYDLSUHQRVQLWHRGQRVLVHL
=$./8A2.
,]ORCHQDWD SRVWDSND RYR]PRCXYD SUL SUHVPHWND QD NXVLWH YUVNL YR
GLVWULEXWLYQLWH PUHCL GD VH XYDCXYD DNWXHOQLRW SUHQRVHQ RGQRV QD VHNRM RG
WUDQVIRUPDWRULWH 8YDCXYDZHWR QD DNWXHOQLWH SUHQRVQL RGQRVL QD WUDQVIRUPD
WRULWH]DHGQRVRXYDCXYDZHWRQDSRWUR^XYDaLWHRYR]PRCXYDGDVHGRELMDWSRWRaQL
UH]XOWDWL]DVWUXLWHSULVLWHYLGRYLNXVLYUVNL
/,7(5$785$
[1] D. Shirmohammadi, H. W. Hong, A. Semlyen, G. X. Luo: "A Compensation-Based Power
Flow Method for Weakly Meshed Distribution and Transmission Networks", IEEE
Transactions on Power Systems, Vol. 3, No. 2, May 1988, pp. 735−762.
[2] C. Cheng, D. Shirmohammadi: “A Three-Phase Power Flow for Real-Time Distribution
System Analysis”, IEEE Transactions on Power Systems, Vol. 10, No. 2, May 1995, pp.
671–679.
[3] X. Zhang, F. Soudi, D. Shirmohammadi, C. S. Cheng: "A Distribution Short Circuit Analysis
Approach Using Hybrid Compensation Method", IEEE Transactions on Power Systems, Vol.
10, No. 4, November 1995, pp. 2053−2059.
[4] A. Tan, W.-H. E. Liu, D. Shirmohammadi: "Transformer and Load Modeling in Short
Circuit Analysis for Distribution Systems", IEEE Transactions on Power Systems, Vol. 12,
No. 3, August 1997, pp. 1315−1322.
[5] D. Raji~i}, R. A~kovski, R. Taleski: "Voltage Correction Power Flow", IEEE Transactions
on Power Delivery, Vol. 9, No. 2, April 1994, pp. 1056−1062.
[6] D. Raji~i}, R. Taleski: "Metod za analiza na zazemjuva~ki sistemi",
Elektrotehni~ki fakultet − Skopje, Zbornik na trudovi, 16/17 godina, broj 1−2.
Skopje 1993/94 godina.
[7] R. Taleski, D. Raji~i}: “Noniterative Power Flow Method for Radial and Weakly Meshed
Distribution networks”, Symposium Energy Systems in Southeastern Europe, Ohrid 1995,
[8] D. Raji~i}, R. Taleski: "Radial Distribution Systems Short Circuit Analysis Using
Admittance Summation Method", Proceedings, Department of Electrical Engineering
Skopje, Vol. 19, No. 1-2, 1996, pp. 11−14.
[9] 9&6WUH]RVNL 650LODNRYL (NYLYDOHQWQH ^HPH HOHNWURHQHUJHWVNLK
WUDQVIRUPDWRUDXDQDOL]LVWDFLRQDUQLKUHCLPD8QLYHU]LWHWX1RYRP6DGX
)DNXOWHWWHKQLaNLKQDXND1RYL6DG
[10] '5DMLaL` 57DOHVNL 0HWRGL ]D DQDOL]D QD HOHNWURHQUJHWVNLWH VLVWHPL
8QLYHU]LWHWì6Y.LULOLPHWRGLMí, Elektrotehni~ki fakultet, Skopje 1996.
0$.('216.,.20,7(7=$*2/(0,(/(.75,A1,6,67(0,6,*5(
6.23-(
97252629(789$:(1$0$.26,*5(
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
$OHNVDQGDU'LPLWURYVNL
(OHNWURWHKQLaNLIDNXOWHW6NRSMH
35(60(7.$1$5$',-$/1,',675,%87,91,05(#,
62)$=,32'$72&,
62'5#,1$
9R WUXGRW H SULNDCDQ HGHQ QRY SULVWDS ]D SUHVPHWND QD VRVWRMEDWD YR
UDGLMDOQLWH GLVWULEXWLYQL VLVWHPL ED]LUDQ QD WHRULMDWD QD ID]L PQRCHVWYD
1HVLJXUQRVWDQDYOH]QLWHSRGDWRFLVHPRGHOLUDVRSULPHQDWDQDID]LEURHYL NRL
SUHWVWDYXYDDWVSHFLMDOHQYLGQDID]LPQRCHVWYD0DWHPDWLaNLWHRSHUDFLLYRRYRM
VOXaDM VH GHILQLUDDW VR 3ULQFLSRW QD HNVWHQ]LMD SUL ^WR GRELHQLWH UH]XOWDWL
LVWRWDND VH YR IRUPD QD ID]L EURHYL 2G SUDNWLaQL SULaLQL VH XSRWUHEXYDDW
WUDSH]RLGQL LOL WULDJROQL ID]L EURHYL VR ^WR SUHVPHWNLWH VH ]QDaLWHOQR
SRHGQRVWDYHQL 2YRM SULVWDS QL RYR]PRCXYD NRPSOHWQR UH^HQLH QD PRCQLWH
UDERWQLVRVWRMELQDVLVWHPRWNRLVHUH]XOWDWQDYNOXaXYDZHWRQDQHVLJXUQRVWD YR
DQDOL]DWD
.OXaQL ]ERURYL UDGLMDOQL GLVWULEXWLYQL PUHCL ID]L SUHVPHWND QD
VRVWRMEDWDID]LPQRCHVWYDID]LEURHYLQHVLJXUQRVW
FUZZY RADIAL DISTRIBUTION LOAD FLOW
ABSTRACT
This paper presents a new approach for load flow analysis in radial distribution networks
based on the fuzzy set theory. The uncertainty of the input parameters is modeled by using fuzzy
numbers, which in turn are special form of fuzzy sets. The mathematical operations in this case
are defined by the Extension Principle and the results obtained are also in a form of fuzzy
numbers. For practical purposes, trapezoidal or triangular fuzzy numbers are used and the
computation is much simpler. This approach gives us a complete solution of the possible system
operating states that result from including the uncertainty in the analysis.
Keywords: radial distribution networks, fuzzy load flow, fuzzy sets, fuzzy numbers,
uncertainty.
929('
1HVRPQHQR H GHND QHVLJXUQRVWD H VRVWDYHQ GHO QD VHNRM UHDOHQ VLVWHP EH]
RJOHG QD WRD GDOL WRM LPD WHKQLaND VRFLROR^ND ELROR^ND LOL QHNRMD GUXJD
SULURGD 6WURJR L SUHFL]QR GHWHUPLQLUDQ VLVWHP QH SRVWRL YR VWYDUQRVWD WXNX
SRVWRL VDPR NDNR DSVWUDNWHQ WHRULVNL PRGHO 6HSDN YDNYDWD DSURNVLPDFLMD YR
GRVWDVOXaDLGDYD]DGRYROLWHOQLUH]XOWDWLLQHVLJXUQRVWDaHVWRSDWLQHVHYNOXaXYD
SUL UD]JOHGXYDZHWR QD VLVWHPRW 1D WRM QDaLQ ]QDaLWHOQR VH XSURVWXYD QHJRYRWR
DQDOL]LUDZHLL]YHGXYDZHWRQDUHOHYDQWQL]DNOXaRFL0H_XWRDLVWRWDNDYRPQRJX
VOXaDL PH_X NRL L YR SODQLUDZHWR L UD]YRMRW QD HOHNWURHQHUJHWVNLWH VLVWHPL
((6,YOLMDQLHWRQDQHVLJXUQRVWDHJROHPRLPRCHGDELGHSUHVXGQRSDWDDWUHED
GDELGHYNOXaHQDQDHGHQLOLQDGUXJQDaLQ[1]
9NOXaXYDZHWRQDQHVLJXUQRVWDYRDQDOL]LWHQDMaHVWRHSRVUHGQRVRSULPHQD
QD QD SULPHU DQDOL]DWD QD RVHWOLYRVW QD GRELHQLWH UH^HQLMD sensitivity analysis
UD]JOHGXYDZHQDSRJROHPEURMYDULMDQWLLVFHQDULMDLVOLaQR5HWNRWRDVHSUDYLQD
GLUHNWHQ QDaLQ VR QHM]LQR QHSRVUHGQR YNOXaXYDZH YR VDPLRW PRGHO 2YD PRCHEL
RGSULaLQL^WRGRVNRURYUHPHHGLQVWYHQSULVWDSNRQSUREOHPRWEH^HSULPHQDWD
QD WHRULMDWD QD YHURMDWQRVW L PDWHPDWLaNDWD VWDWLVWLND 0H_XWRD UDERWLWH
VX^WLQVNL VH PHQXYDDW RG JRGLQD QDYDPX VR YRYHGXYDZHWR QD NRQFHSWRW QD
QHSUHFL]QLQHGRGHILQLUDQLPQRCHVWYDLOLWQDUID]LPQRCHVWYDfuzzy sets[2]
3ULPHQDWD QD RYDD WHRULMD NRMD SUHWVWDYXYD JHQHUDOL]LUDZH QD NODVLaQDWD
WHRULMD QD PQRCHVWYD L NRMD GR]YROXYD SDUFLMDOQD SULSDGQRVW QD HOHPHQWLWH YR
QHNRH PQRCHVWYR RYR]PRCXYD PRGHOLUDZH QD QHVLJXUQRVWD NRMD QHPD VWDWLVWLaNL
NDUDNWHU QD QHVLJXUQRVWD NRMD SURL]OHJXYD RG QHGRYROQRWR SR]QDYDZH LLOL
GHILQLUDQRVW QD UDERWLWH RGQRVQR QD QHVLJXUQRVWD YR VHPDQWLaND VPLVOD 2YGH
WUHED GD VH QDJODVL GHND RYDD WHRULMD QH SUHWVWDYXYD ]DPHQD ]D WHRULMDWD QD
YHURMDWQRVW WXNX QHM]LQ NYDOLWDWLYHQ NRPSOHPHQW .DNR WDNYD QDR_D Vp SRJROHPD
SULPHQDYRUD]QLREODVWLQDaRYHNRYRWRGHOXYDZHPH_XNRLYRSRVOHGQRYUHPHLYR
HOHNWURHQHUJHWLNDWD[9]
.DNR ^WR H SR]QDWR SUHVPHWNDWD QD UDERWQDWD VRVWRMED QD VLVWHPRW H
QDMaHVWDWD SUHVPHWND ^WR VH L]YHGXYD SUL DQDOL]LWH QD ((6 D VR WRD L QD
GLVWULEXWLYQLWHPUHCL'0NDNRQLYQLVRVWDYQLGHORYL1HM]LQDWD]DGDaDHGDJL
RSUHGHOL QDSRQVNLWH VRVWRMEL YR MD]OLWH QD VLVWHPRW L WHNRYLWH QD PR`QRVWL YR
QHJRYLWHJUDQNLHOHPHQWL]DHGHQRGQDSUHG]DGDGHQUHCLPQDUDERWDNDNRY^WRH
QDSULPHUUHCLPRWQDPDNVLPDOQRRSWRYDUXYDZH3ULWRDVNRURVHNRJD^RVYHQYR
LVNOXaLWHOQR UHWNL VLWXDFLL QD on-line DQDOL]D PR`QRVWLWH YR MD]OLWH VH QHNRL
SUHWSRVWDYHQL YUHGQRVWL NRL ED]LUDDW QD SUHWKRGQL PHUHZD LVNXVWYR SURJQR]D
LOL VXEMHNWLYQD SURFHQND 2YDD QHVLJXUQRVW QD YOH]QLWH SRGDWRFL RGQRVQR QD
LQMHNWLUDQLWH PR`QRVWL YR VLVWHPRW QDMaHVWR VH ]HPD SUHGYLG QD WRM QDaLQ ^WR
SUHVPHWNDWDVHSRYWRUXYDSRYH`HSDWLVRQLYQLUD]OLaQLSUHWSRVWDYHQLYUHGQRVWL
9DNYLRW SULVWDS YR QDMJROHPD PHUND H XVORYHQ RG PHWRGLWH ]D SUHVPHWND QD
VRVWRMEDWD NRL QL VWRMDW QD UDVSRODJDZH L NRL YR GDOHNX QDMJROHP EURM VH
GHWHUPLQLVWLaNLRULHQWLUDQL
'UXJ SULVWDS NRQ YNOXaXYDZHWR QD QHVLJXUQRVWD SUHWVWDYXYD WQDU
VWRKDVWLaND SUHVPHWND QD VRVWRMEDWD YR NRMD YOH]QLWH YHOLaLQL VH ]DGDYDDW NDNR
VOXaDMQL SURPHQOLYL GHILQLUDQL VR VYRLWH IXQNFLL QD UDVSUHGHOED QD
YHURMDWQRVWD9DNRYSULVWDSNRQSUHVPHWNDWDQDVRVWRMEDWDYRUDGLMDOQL'05'0
HSUH]HQWLUDQQD3UYRWRVRYHWXYDZHQD0$.26,*5([10, 11]
6WRKDVWLaNLRW SULVWDS ]D RSUHGHOXYDZH QD VRVWRMEDWD YR ((6 RYR]PRCXYD
RSID`DZHQDVOXaDMQDWDSULURGDQDYOH]QLWHYHOLaLQLLSUHWVWDYXYDNYDOLWDWLYHQ
VNRN YR RGQRV QD NRQYHQFLRQDOQLRW GHWHUPLQLVWLaNL SULVWDS 0H_XWRD WRM QH
SUHWVWDYXYD L FHORVQR UH^HQLH ]D SUREOHPRW QD QHVLJXUQRVWD ELGHM`L NDNR ^WR
EH^H SUHWKRGQR NDCDQR SRVWRL L GUXJ WLS QD QHVLJXUQRVW NRMD QHPD VWRKDVWLaND
SULURGDLQHELWUHEDORGDVHPRGHOLUDNDNRVOXaDMQDSURPHQOLYD
.DNR HGQRVWDYQD SRWYUGD QD SUHWKRGQLRW VWDY `H JR QDYHGHPH SULPHURW ]D
QHVLJXUQRVWDQDSDUDPHWULWHQD]DPHQVNLWH^HPLQDHOHPHQWLWHYRVLVWHPRW7DND
LPSHGDQFLMDWDQDHGHQSNYRGHSURSRUFLRQDOQDVRQHJRYDWDGROCLQDNRMDSDN RG
VYRMD VWUDQD H VDPR SULEOLCQR SR]QDWD YHOLaLQD 1HD QH EL PRCHOH GD MD
UD]JOHGXYDPH NDNR VOXaDMQD SURPHQOLYD ELGHM`L WDD QH MD PHQXYD VYRMDWD YUHGQRVW
SRVOXaDHQSDW9VX^QRVWWDDQHMDPHQXYDVYRMDWDYUHGQRVWYRRS^WRVDPR^WRQDV
QH QL H VRVHPD SUHFL]QR SR]QDWD ,VWRWR PRCH GD VH NDCH L ]D YUHGQRVWLWH QD
DNWLYQDWD RGQRVQR UHDNWLYQDWD RWSRUQRVW QD YRGRW SR HGLQLFD GROCLQD NRL VH
NRQVWDQWQLSULNRQVWDQWQLXVORYLQDHNVSORDWDFLMDQRQLNRJD^SRWSROQRSR]QDWL
7LHNDNRLGROCLQDWDQDYRGRWSUHWVWDYXYDDWID]LEURHYL)%
6R VOLaQR UD]PLVOXYDZH )% PRCH GD VH YRYHGDW L ]D PRGHOLUDZH QD
QHGRYROQR QHSUHFL]QR GHOXPQR SR]QDWLWH RSWRYDUXYDZD QD SRWUR^XYDaLWH [6]
2VREHQRYRVOXaDLWHNRJDVHSUDYDWDQDOL]LQDLGQLVRVWRMEL]DNRLSRVWRMDWVDPR
QHMDVQLSURHNFLLLSURJQR]L
.DM VWRKDVWLaNLRW SULVWDS SUL YDNYLWH DQDOL]L RSWRYDUXYDZDWD VH
PRGHOLUDDW NDNR VOXaDMQL SURPHQOLYL VR QRUPDOQL JDXVRYL IXQNFLL QD
UDVSUHGHOED QD YHURMDWQRVWD NRL LPDDW RaHNXYDQL YUHGQRVWL µi HGQDNYL QD
SURJQR]LUDQLWH L VWDQGDUGQL GHYLMDFLL σi HGQDNYL QD JUH^NLWH QD XSRWUHEHQLWH
PHWRGL ]D SURJQR]LUDZH 1R YDNYLRW SULVWDS LPSOLFLWQR SRGUD]ELUD GHND
XVORYLWH YR PLQDWRWR VSRUHG NRL VH SUDYDW SURJR]LWH `H VH ]DGUCDW L YR LGQLQD
^WRVHUD]ELUDQLNRMQHPRCHGDJRJDUDQWLUD7DNDSUD^DZHWR]DWRDNRMSULVWDS
H LVSUDYHQ YR RYRM VOXaDM RVWDQXYD VpX^WH RWYRUHQR L H SUHGPHW QD VXEMHNWLYQD
SURFHQNDQDDQDOLWLaDURW
.XVRVYUWYU]ID]LPQRCHVWYDWDID]LEURHYLWHRSHUDFLLWHVRID]LEURHYL
NDNRLQLYQRWRSRGUHGXYDZHHGDGHQYRGUXJWUXGQDDYWRURW[12], YRNRMHSULPHQHW
RYRM SULVWDS ]D HNRQRPVNR YUHGQXYDZH QD YDULMDQWQL UH^HQLMD VR QHVLJXUQL
SRGDWRFL 2YGH `H ELGDW SRYWRUHQL VDPR RVQRYQLWH UDERWL D ]DLQWHUHVLUDQLRW
aLWDWHOSRNUDM[12]VHXSDWXYDX^WHQD[2, 3, 7, 8]NDNRLQDGUXJDOLWHUDWXUDRGRYDD
REODVW
)$=,02'(/,5$:(
)D]LEURHYL
)% VH VSHFLMDOHQ VOXaDM QD ID]L PQRCHVWYD ,DNR WLH PRCH GD LPDDW ELOR
NDNYD IXQNFLMD QD SULSDGQRVW membership function NRMD ^WR ]DGRYROXYD RGUHGHQL
XVORYLQDMaHVWRRGSULaLQLQDSRHGQRVWDYXYDZH)%VHSUHWVWDYXYDDWVRWULDJROQD
LOLWUDSH]RLGQDIXQNFLMDQDSULSDGQRVWNDNYD^WRHSULNDCDQDQDVOLNDWD
(GHQ WUDSH]RLGHQ )% PRCH GD VH GHILQLUD L SUHNX QHJRYLWH NDUDNWHULV
WLaQL WRaNL NDNR SRGUHGHQD aHWYRUND [a1, a2, a3, a4] 7RM PRCH GD VH LQWHUSUHWLUD
NDNRYHOLaLQDNRMDPRCHGDSRSULPLVDPRYUHGQRVWLSRPH_X a1La4QRQDMPQRJXVH
RaHNXYD GHND `H ELGH SRPH_X YUHGQRVWLWH a2 L a3 1D SULPHU YU] RVQRYD QD
SUHWKRGQRWR LVNXVWYR ]D VRRGYHWQLRW WLS SRWUR^XYDaL QHNRM EL PRCHO GD GDGH
SURFHQND]DYUYQDWDPR`QRVWQDQRYLRWSRWUR^XYDaNRM`HVHSULNOXaLQDPUHCDWD
NDNR[2, 3.5, 4.5, 6] kW7RDEL]QDaHORGHNDVSRUHGQHJRYRWRPLVOHZHWDDVHRaHNXYD
GDELGHSRPH_X3.5 kW L 4.5 kWQRQHPRCHGDELGHSRPDODRG2 kWQLWXSRJROHPDRG
kW
~
3RGαSUHVHNAαQDHGHQ)% A VHSRGUD]ELUDLQWHUYDORWQDRELaQLEURHYL
~ LPD YUHGQRVWL µ ~ ≥ α 7DND QD SULPHU YR
]D NRL IXQNFLMDWD QD SULSDGQRVW µ A
A
SUHWKRGQLRWSULPHU]DID]LPR`QRVWDQDQRYLRWSRWUR^XYDaQHJRYLRWSUHVHNH
LQWHUYDORWQDUHDOQLEURHYL[2.75, 5.25]
µ A~ ( x)
1
0
x
a1
a2
a3
a4
~
6OLND )XQNFLMD QD SULSDGQRVW ]D WUDSH]RLGQLRW ID]L EURM A NRMD SUHWVWDYXYD LQWHUYDO QD PRCQL
YUHGQRVWL [a1, a4] L LQWHUYDO QD QDMRaHNXYDQL YUHGQRVWL [a2, a3]
9RVSHFLMDOQLRWVOXaDMNRJDa2 = a3RGWUDSH]RLGQLRW)%VHGRELYDWULDJROHQ
)%6OLaQRVHNRMLQWHUYDOHQEURMHVDPRVSHFLMDOHQVOXaDMQDWUDSH]RLGHQ)%SUL
a1 = a2 L a3 = a4.RQHaQRNRJDa1 = a2 = a3 = a4VHGRELYDRELaHQUHDOHQEURM1DWRM
QDaLQUHDOQLWHLLQWHUYDOQLWHEURHYLVHVDPRVSHFLMDOQL)%
)XQNFLLRGID]LEURHYL
7UDGLFLRQDOQLRW PDWHPDWLaNL NRQFHSW ]D IXQNFLMD H SUR^LUHQ L YR ID]L
GRPHQRW VR SRPR^ QD WQDU SULQFLS QD HNVWHQ]LMD extension principle [7, 8] 6R
SULPHQDWDQDRYRMSULQFLSPRCHGDVHSRNDCHGHNDDULWPHWLaNLWHRSHUDFLLVR)%
VHHGQDNYLQDVRRGYHWQLWHLQWHUYDOQLDULWPHWLaNLRSHUDFLL]DVHNRMαSUHVHN
~
~
α
α α
=ELURW QD GYD )% A L B VR αSUHVHFL A α = [a1α , a α
2 ] L B = [b1 , b 2 ] ~
UHVSHNWLYQRGDYD)% C aLM^WRαSUHVHNCαHGDGHQVR
α α
α α
α
α α
α
Cα = A α + Bα = [c1α , c α
2 ] = [a1 , a 2 ] + [b1 , b 2 ] = [a1 + b1 , a 2 + b 2 ] .
(1)
~
~
6OLaQR ]D RVWDQDWLWH DULWPHWLaNL RSHUDFLL SRPH_X GYD )% A L B VH
~
GRELYDDWVOHGQLWHL]UD]L]DVHNRMαSUHVHNQDUH]XOWDQWQLRW)% C :
α α
α α
α
α α
α
Cα = A α − Bα = [c1α , c α
2 ] = [a1 , a 2 ] − [b1 , b 2 ] = [a1 − b 2 , a 2 − b1 ] ,
(2)
α α
α α
α α α α
Cα = A α ⋅ Bα = [c1α , c α
2 ] = [a1 , a 2 ] ⋅ [b1 , b 2 ] = [a1 ⋅ b1 , a 2 ⋅ b 2 ] ,
(3)
α α
α α
α α α α
Cα = A α / Bα = [c1α , c α
2 ] = [a1 , a 2 ] /[b1 , b 2 ] = [a1 / b 2 , a 2 / b1 ] .
(4)
2SHUDFLMDWD YR QH H GHILQLUDQD DNR LQWHUYDORW Bα MD VRGUCL QXODWD SD
WDNDWRMPRCHGDVRGUCLVDPRSR]LWLYQLLOLVDPRQHJDWLYQLEURHYL
~
~ ~ ~
~ ~
~
7UHEDGDVHQDJODVLGHNDDNR]DWUL)% A B L C YDCL C A B )% A QH
~ ~ ~
PRCH GD VH GRELH QD]DG NDNR A C B =D WDD FHO WUHED GD VH SULPHQL WQDU
~ ~
~
RSHUDFLMDGHNRQYROXFLMDREWSFMVE[IXSRGQRVQR A C ( B [3]2YDHUH]XOWDWQD
~
~
IDNWRW^WR)% B L C QHVHPH_XVHEQRQH]DYLVQLWXNXVHYRHGHQYLGNRUHODFLMD
~ ~ ~
~
6OLaQRYDCLLYRVOXaDMRWQDSURL]YRGRW C A ⋅ B )% A PRCH GD VH GRELH
~ ~
~
QD]DGSUHNXGHNRQYROXFLMDQDPQRCHZHWRRGQRVQR A C B =ELURW L UD]OLNDWD NDNR OLQHDUQL RSHUDFLL JR ]DGUCXYDDW REOLNRW QD
IXQNFLLWH QD SULSDGQRVW L UH]XOWLUDDW VR WUDSH]RLGHQ )% DNR VH L]YHGHQL YU]
WUDSH]RLGQL)%*HQHUDOQRRYDQHHVOXaDMVRSURL]YRGRWLNROLaQLNRWNDNRLVR
VLWH RVWDQDWL QHOLQHDUQL WUDQVIRUPDFLL 6HSDN RG SUDNWLaQL SULaLQL
UH]XOWDWLWHYRRELaDHQRVHDSURNVLPLUDDWVRWUDSH]RLGQLLOLWULDJROQL)%1D
WRMQDaLQSRWUHEQRHGDVHSUHVPHWDDWVDPRUH]XOWDQWQLWHαSUHVHFL]Dα Lα 6SRPHQDWLRW SULQFLS QD HNVWHQ]LMD H JHQHUDOHQ L PRCH GD VH SULPHQL YU]
VHNDNYD IXQNFLMD RG HGHQ LOL SRYH`H DUJXPHQWL ]D GD VH SUHVPHWD IXQNFLMDWD QD
SULSDGQRVW QD UH]XOWDQWQDWD ]DYLVQD SURPHQOLYD 2YD PRCH GD VH QDSUDYL VR
SUHVPHWNDQDSRHGLQLWHαSUHVHFLQDVOLaHQQDaLQNDNRLSRJRUH1DSULPHUVR
~
~
HGDGHQαSUHVHNRWCαQDUH]XOWDQWQLRW)% C GRELHQVRVWHSHQXYDZHQD)% A QD
VWHSHQn, nSULURGHQEURM
[ {
} {
α n
α n
n
C α = min (a1α ) n , (a α
2 ) , max (a 1 ) , (a 2 )
}]
(5)
9R SUHWKRGQLRW L]UD] H SUHWSRVWDYHQR GHND LQWHUYDORW Aα QH MD VRGUCL
QXODWD9RVSURWLYQRGROQDWDJUDQLFDQDLQWHUYDORWCα`HELGHQXODNRJDnHSDUHQ
EURM
~
6OLaQRVRHGDGHQαSUHVHNRWCαQDUH]XOWDQWQLRW)% C GRELHQNDNRnWL
~
NRUHQQD)% A , nSULURGHQEURM
C α = n a 1α , n a α
, n a 3α , n a α
2
4
(6)
*HQHUDOQR ]D VHNRMD IXQNFLMD f NRMD ^WR H NRQWLQXLUDQD L QHRSD_DaND YR
LQWHUYDORW[a1, a4]YDCL
~
f (A) = [ f (a1 ), f (a 2 ), f (a 3 ), f (a 4 )] .
(7)
6OLaQR ]D VHNRMD IXQNFLMD g NRMD ^WR H NRQWLQXLUDQD L QHUDVWHaND YR
LQWHUYDORW[a1, a4]YDCL
~
g (A) = [g (a 4 ), g (a 3 ), g (a 2 ), g (a 1 )].
(8)
9R VSHFLMDOQLRW VOXaDM NRJD )% GHJHQHULUDDW YR RELaQL UHDOQL EURHYL
QDUHaHQL X^WH L ID]L VLQJOWRQL fuzzy singletons VLWH RSHUDFLL L IXQNFLL JR
LPDDW YRRELaDHQRWR ]QDaHZH 9R WDD VPLVOD ID]L DQDOL]DWD L ID]L PDWHPDWLNDWD
JL RSID`DDW UHDOQDWD L LQWHUYDOQDWD DQDOL]D L PDWHPDWLND NDNR VSHFLMDOQL
VOXaDL
)D]LSUHVPHWNDQDR-XHOHPHQW
3ULPHQDWD QD )% ]D SUHVPHWND QD VRVWRMEDWD YR 5'0 `H MD LOXVWULUDPH
QDMSUYR QD SULPHURW QD HOHNWULaQDWD SUHVPHWND QD HGHQ SN YRG SULNDCDQ QD
VOLNDWDNRMPRCHGDVHWUHWLUDLNDNRQDMSURVWREOLNQD5'0
1D VOLNDWD VH SULNDCDQL L QRPLQDOQLWH SRGDWRFL SRWUHEQL ]D SUHVPHWNDWD
QD]DJXEDWDQDQDSRQL]DJXEDWDQDPR`QRVWYR10 kVYRG7DND]DGDGHQLWHSRGDWRFL
VHVDPRSULEOLCQLLQLHELPRCHOHGDMDPRGHOLUDPHWDDQHVLJXUQRVWVRSRPR^QD
)%QDVOHGQLRWQDaLQ
1
2
10 kV 6 km
0.83+j0.33 Ω/km
600 kVA
cosϕ=0.9
6OLND (GQRVWDYQD 5'0 NDNR SULPHU ]D ID]L SUHVPHWND
$NR QD SULPHU UHJXODFLRQLRW WUDQVIRUPDWRU LPD UHJXODFLRQD SUHNORSND
VRVWHSHQLQDUHJXODFLMD ±×NRMDJRNRQWUROLUDQDSRQRWQDYUHGQRVW 10.5 kV
WRJD^ QHJRYDWD PDNVLPDOQD YDULMDFLMD `H L]QHVXYD 10.5±0.15 kV 2aHNXYDQDWD
YDULMDFLMD EL PRCHOD GD ELGH SRORYLQD RG WDD YUHGQRVW 1D WRM QDaLQ QDSRQRW YR
MD]HORW`HJRSUHWVWDYLPHVR)%
~
U1 = [10.35, 10.425, 10.575, 10.65] kV.
3RQDWDPXDNRGR]YROLPHGHNDYRGROCLQDWDQDYRGRWPRCHGDLPDJUH^NDRG
WDDELPRCHODGDVHSUHWVWDYLNDNR
~
l = [5.88, 5.94, 6.06, 6.12] km.
1D WRM QDaLQ SRG SUHWSRVWDYND GHND LPSHGDQFLMDWD QD YRGRW SR HGLQLFD
GROCLQDz=0.83+j0.33Ω/kmHWRaQDYNXSQDWDLPSHGDQFLMDQDYRGRW`HL]QHVXYD
~ ~ ~
~
Z = z ⋅ l = R + jX [4.880, 4.930, 5.030, 5.080] + j[1.940, 1.960, 2.000, 2.020]) Ω.
.RQHaQRLPRCQDWDYDULMDFLMDQDPR`QRVWDQDSRWUR^XYDaRWYRMD]HORW`H
MDSUHWVWDYLPHVRVOHGQLWHGYD)%]DSULYLGQDWDPR`QRVWLQHM]LQLRWIDNWRU
~
~ = [0.85, 0.88, 0.92, 0.95].
S = [500, 540, 560, 600] kVAL cos ϕ
2
2
~
3R DQDORJLMD VR GHWHUPLQLVWLaNDWD SUHVPHWND, QDSRQRW YR MD]HORW U 2 VH
GRELYDNDNRUH^HQLHQDVOHGQDWDELNYDGUDWQDUDYHQND[4]
~ ~
~
~ ~
~
~
~ +X
~ ) +~
U 42 − U 22 U12 − 2S2 (R ⋅ cos ϕ
⋅ sin ϕ
S22 Z2 = 0 ,
(9)
2
2
[
]
RGQRVQR
~
U 2 = [10.02, 10.13, 10.30, 10.40] kV.
~ YR VH RSUHGHOXYD RG )% cos ϕ
~ VR SRVOHGRYDWHOQD SULPHQD QD
)% sin ϕ
2
2
IXQNFLLWHarccosLsinNRULVWHM`LJLSULWRDL]UD]LWHL
~
=DJXEDWDQDQDSRQYRYRGRW ∆U `HELGHGDGHQDVRVOHGQDWDGHNRQYROXFLMD
~ ~
~
∆U = U1 (−) U 2 =[0.25, 0.28, 0.30, 0.33] kV.
.RPSOHNVQDWD ]DJXED QD PR`QRVW YR YRGRW NDNR L YR GHWHUPLQLVWLaNLRW
VOXaDMHGDGHQDVR
~
~ S22 ~ 2 ~ 2
(10)
∆ S = ~ ⋅ R + jX ,
U 22
(
)
RGQRVQR
~
∆S = [11.28, 13.55, 15.38, 18.20] + j[4.48, 5.39, 6.12, 7.24] kVA.
)$=,0(72'=$35(60(7.$1$5'0
,]ORCHQDWD SRVWDSND YR SUHWKRGQDWD JODYD ]D ID]L SUHVPHWND QD HGHQ R-X
HOHPHQW OHCL YR RVQRYDWD QD LWHUDWLYQLRW PHWRG ]D SUHVPHWND QD VRVWRMEDWD QD
SURL]YROQD 5'0 0HWRGRW H YVX^QRVW ID]L SUHVOLNXYDZH QD HGQD YDULMDQWD QD
WQDU PHWRG VXPLUDZH QD PR`QRVWL [4] 3RVWDSNDWD SUHWSRVWDYXYD GHND YR
PUHCDWDSUHWKRGQRHL]YU^HQRSRGUHGXYDZHQDHOHPHQWLWHLVHVRVWRLRGVOHGQLWH
aHNRUL
•1DMQDSUHG SUHG GD ]DSRaQH LWHUDWLYQLRW SURFHV QDSRQLWH YR VLWH MD]OL
GRELYDDWSRaHWQLYUHGQRVWLHGQDNYLQDQDSRQRWYRQDSRMQLRWMD]RO9U]RVQRYDQD
WDND SUHWSRVWDYHQLWH QDSRQL LOL SUHVPHWDQLWH YUHGQRVWL RG SUHWKRGQDWD
LWHUDFLMD VH SUHVPHWXYDDW YNXSQLWH ID]L LQMHNWLUDQL PR`QRVWL YR MD]OLWH
PR`QRVWLWH QD SRWUR^XYDaLWH L SRSUHaQLWH DGPLWDQFLL 7LH LVWRYUHPHQR JL
RGUHGXYDDWLSRaHWQLWHYUHGQRVWLQDPR`QRVWLWH^WRWHaDWQDNUDMRWR]QDNDRG
UHGQDWD JUDQND YR π]DPHQVNDWD ^HPD 7DD PR`QRVW ]D HOHPHQWRW i-j YR
LWHUDFLMDWDk`HL]QHVXYD
~ ( k ) ~ (k ) ~ ( k )
~ (k ) ~ * ~
S"i − j = Pi′′− j + jQ′i′− j = − S j + Y jΣ ⋅ ( U i( k −1) ) 2 .
(11)
~
NDGH VR Y jΣ H R]QDaHQ ]ELURW QD VLWH SRSUHaQL ID]L DGPLWDQFLL SULNOXaHQL YR
MD]RORW j RQLH RG π]DPHQVNLWH ^HPL QD HOHPHQWLWH NDNR L DGPLWDQFLLWH QD
~ (k )
HYHQWXDOQLWH NRQGHQ]DWRUVNL EDWHULL UHDNWRUL L VO D VR S j LQMHNWLUDQDWD
ID]L NRPSOHNVQD PR`QRVW YR MD]RORW j YR LWHUDFLMDWD k <YH]GLaNDWD YR
VXSHUVNULSWR]QDaXYDNRQMXJDFLMDQDNRPSOHNVQDWDYHOLaLQD
•3RWRD WUJQXYDM`L RG HOHPHQWRW VR QDMJROHP UHGHQ EURM YR PUHCDWD
VXNFHVLYQR VH SUHVPHWXYDDW PR`QRVWLWH QD NUDMRW YR VRRGYHWQLWH QDSRMQL JUDQNL
backward sweepVRGRGDYDZHQDPR`QRVWDL]DJXELWHQDPR`QRVWYRREUDERWXYDQDWD
JUDQND7DND]DJUDQNDWDi-jaLMD^WRQDSRMQDJUDQNDHQDSULPHUJUDQNDWDl-iL
NRMD^WRJRLPDUHGQLRWEURMQDMD]RORWiVHSUHVPHWXYD
2
(k )
~
~ ( k ) ~ (k ) ~ (k ) ~
Si′′− j
S"l − i := S"l − i + S"i − j + Zi − j ⋅ ~
.
U (jk )
(12)
•2WNRJD `H VH SUHVPHWDDW PR`QRVWLWH YR JUDQNLWH WUJQXYDM`L RG SUYDWD
JUDQNDYROLVWDWDQDSRGUHGHQLJUDQNLVHSULVWDSXYDNRQSUHVPHWNDQDQDSRQLWHYR
MD]OLWH forward sweep 1DSRQRW YR NUDMQLRW MD]RO QD JUDQNDWD i-j SUL RYDD
SUHVPHWNDHGDGHQVR
~ (k ) ~ ( k )
Pi′′− j − jQ′i′− j
~ ( k ) ~ (k ) ~
,
(13)
U j = U i − Zi − j ⋅
~*
Uj
RGQRVQR SR VUHGXYDZHWR VR UD]GYRMXYDZH QD UHDOQLRW L LPDJLQDUQLRW GHO L
L]HGQDaXYDZHWRQDPRGXOLWHVHGRELYD
(k ) 2
~
′
′
S
i− j
~
~
~
~
~
~
~
(14)
( U (jk ) ) 2 = ( U i( k ) ) 2 − 2 ⋅ (Pi′′−(kj ) ⋅ R i − j + Q′i′−( kj) ⋅ X i − j ) − Z i2− j ⋅ ~
U (jk )
~
LNRQHaQRELNYDGUDWQDWDUDYHQNDSRQHSR]QDWDWD U j [
]
~ (k ) ~
~ (k )
~ (k )
~ (k )
~ (k ) ~
~ (k )
~
( U j ) 4 − ( U i ) 2 − 2 ⋅ (Pi′′− j ⋅ R i− j + Q ′i′− j ⋅ X i − j ) ⋅ ( U j ) 2 + Z i2− j ⋅ (Si′′− j ) 2 = 0.
(15)
7UHED GD VH QDSRPHQH GHND GRNRONX VH NRULVWL L]UD]RW ]D SUHVPHWND QD
~
QDSRQLWHYRVHNRMDLWHUDFLMDGHOHZHWRVR U j YVX^QRVWSUHWVWDYXYDGHNRQYROXFLMD
QDPQRCHZH
35,0(5
3UHWKRGQR L]QHVHQDWD SRVWDSND `H MD LOXVWULUDPH QD SULPHU SUHY]HPHQ RG
[5] 0UHCDWD H SULNDCDQD QD VOLNDWD 3 D SRGDWRFLWH ]D HOHPHQWLWH YR HGLQLaQL
YUHGQRVWL HY VH GDGHQL YR 7DEHODWD I 0UHCDWD LPD MD]OL YNOXaXYDM`L JR L
QDSRMQLRWRGNRLQDVHSULNOXaHQLSRWUR^XYDaLNDNR^WRHWRDSULNDCDQRQD
VOLNDWD 2SWRYDUXYDZDWD QD VLWH SRWUR^XYDaL LPDDW LVWD QRPLQDOQD YUHGQRVW
0,16+j0,08HY1DSRQRWYRQDSRMQLRWMD]HO"0"L]QHVXYD1,05HY
=DSRWUHELWHQDID]LSUHVPHWNDWDRSWRYDUXYDZDWDQDSRWUR^XYDaLWH `HJL
ID]LIL]LUDPH QD WRM QDaLQ ^WR `H JL SRPQRCLPH VR )% [0.9, 0.95, 1.05, 1.10] D
QDSRQRW YR QDSRMQLRW MD]HO `H JR SUHWVWDYLPH VR WULDJROQLRW )% [0.9, 1, 1, 1.05]
3DUDPHWULWHQDHOHPHQWLWHQDPUHCDWDRVWDQXYDDWRELaQLYUHGQRVWLNDNR^WRVH
GDGHQLYRWDEHODWDYRSULORJRW
5H]XOWDWLWHRGID]LSUHVPHWNDWD]DQDSRQLWHYRMD]OLWHNDNRL]DDNWLYQLWH
L UHDNWLYQLWH PR`QRVWL YR HOHPHQWLWH QD NUDHYLWH QD VRRGYHWQLWH MD]OL VH
SULNDCDQLYR7DEHODWDII9RWDEHODWDVHSULNDCDQLVDPRNDUDNWHULVWLaQLWHWRaNL
QDWUDSH]RLGQLWHIXQNFLLQDSULSDGQRVWRGQRVQRJUDQLFLWHQDαSUHVHFLWH]Dα Lα 3URFHVRW QD SUHVPHWXYDZH YR NRQNUHWQLRY VOXaDM LVNRQYHUJLUDO SR LWHUDFLL3ULWRD NDNR NULWHULXP QD WRaQRVW H XVYRHQR GD ]ELURW QD DSVROXWQLWH
YUHGQRVWLQDSULUDVWLWHQDSUHVHFLWHQDYNXSQLWHDNWLYQLLUHDNWLYQLPR`QRVWL
YRVLVWHPRWELGHSRPDORG 7UHEDGDVHQDSRPHQHGHNDYRVOXaDMRWNRJDVLWHYOH]QL)%GHJHQHULUDDWYR
RELaQL UHDOQL EURHYL a1 = a2 = a3 = a4 VH GRELYDDW LVWL UH]XOWDWL NDNR L VR
RELaQDWD GHWHUPLQLVWLaND SUHVPHWND QD 5'0 1D WRM QDaLQ RYDD YWRUDWD
SUHWVWDYXYDVDPRVSHFLMDOHQVOXaDMQDSUYDWD
$%(/$ I. 2'$72&, =$ 6,67(027
0
7
1
3
4
2
5
6
18
7
8
19
21
9
11
10
20
12
22
23
24
25
26
27
28
29
13
14
15
16
17
6OLND 5DGLMDOQD GLVWULEXWLYQD PUHCD RG
[5]
3
JUDQND
0-1
1-2
2-3
2-4
2-5
5-6
5-7
5-8
5-9
9 - 10
9 - 11
9 - 12
9 - 13
13 - 14
13 - 15
13 - 16
13 - 17
2 - 18
18 - 19
18 - 20
18 - 21
21 - 22
21 - 23
21 - 24
24 - 25
24 - 26
24 - 27
27 - 28
27 - 29
R [HY]
0.0236
0.00027
0.0051
0.0062
0.00316
0.00297
0.00297
0.00786
0.00128
0.0033
0.00502
0.00273
0.00078
0.00249
0.00262
0.00646
0.0041
0.00117
0.00114
0.00609
0.00119
0.0008
0.00342
0.0009
0.00296
0.00318
0.00092
0.00604
0.00159
X [HY]
0.0233
0.0002
0.0005
0.0006
0.00114
0.00031
0.00031
0.00081
0.0008
0.00034
0.00052
0.00028
0.00049
0.00026
0.00027
0.00066
0.00042
0.00073
0.00012
0.00062
0.00075
0.00026
0.00033
0.00055
0.00030
0.00033
0.00058
0.00068
0.00016
=$./8A2.
)D]L EURHYLWH L ID]L PDWHPDWLNDWD SUHWVWDYXYDDW QDaLQ QD PRGHOLUDZH QD
QHVLJXUQRVWD NRMD QHPD VWDWLVWLaNL NDUDNWHU L RYR]PRCXYDDW QHM]LQR HOHJDQWQR
YNOXaXYDZH YR SUHVPHWNLWH QD VRVWRMEDWD QD VLVWHPRW 2YRM SULVWDS PRCH GD VH
UD]JOHGXYD L NDNR SUR^LUXYDZH YR GODERaLQD QD LQWHUYDOQLWH EURHYL L
LQWHUYDOQDWDPDWHPDWLND7RMQHSUHWVWDYXYD]DPHQD]DVWRKDVWLaNLRWSULVWDSWXNX
QHJRYNYDOLWDWLYHQNRPSOHPHQW
5H]XOWDWLWHGRELHQLVRID]LSUHVPHWNDQDVRVWRMEDWDLQWHJUDOQRJLVRGUCDW
VLWH UH^HQLMD]DYNOXaHQLWH QHVLJXUQRVWL 1DSRURW VR NRM WRD H QDSUDYHQR H VDPR
PDONX SRJROHP YR VSRUHGED VR RQRM SRWUHEHQ ]D RELaQDWD GHWHUPLQLVWLaND
SUHVPHWND 2G GUXJD VWUDQD ID]L SULVWDSRW GDYD NRPSOHWQD VOLND ]D VLWH PRCQL
VRVWRMELQDUDERWDQDVLVWHPRW6HaLQLGHNDRYRMSULVWDSRWYRUDQRYLKRUL]RQWL]D
NYDOLWDWLYQRSUR^LUXYDZHLSRGREUXYDZHQDDQDOL]DWDQD((6
$%(/$ II (=8/7$7, 2' )$=, 35(60(7.$7$ 1$ 05( $7$ 35,.$ $1$ 1$ 6/,.$
7
C
5
~
U (HY)
α
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
0
0.9000
0.7243
0.7225
0.7212
0.7209
0.7132
0.7125
0.7125
0.7112
0.7103
0.7094
0.7090
0.7096
0.7093
0.7086
0.7086
0.7076
0.7082
0.7195
0.7192
0.7179
0.7171
0.7169
0.7163
0.7160
0.7152
0.7152
0.7154
0.7138
0.7150
1
1.0000
0.8598
0.8584
0.8573
0.8571
0.8510
0.8504
0.8504
0.8493
0.8486
0.8480
0.8476
0.8481
0.8478
0.8473
0.8473
0.8465
0.8470
0.8559
0.8557
0.8547
0.8541
0.8539
0.8534
0.8532
0.8525
0.8525
0.8527
0.8514
0.8524
9NXSQL ]DJXEL YR VLVWHPRW
1
1.0000
0.8757
0.8744
0.8735
0.8733
0.8679
0.8673
0.8673
0.8664
0.8658
0.8652
0.8649
0.8653
0.8651
0.8646
0.8646
0.8639
0.8644
0.8723
0.8721
0.8712
0.8707
0.8705
0.8700
0.8698
0.8693
0.8693
0.8694
0.8683
0.8691
C
~
P ′′ (HY)
0
1.0500
0.9407
0.9396
0.9387
0.9386
0.9338
0.9333
0.9333
0.9325
0.9320
0.9314
0.9312
0.9315
0.9313
0.9309
0.9309
0.9303
0.9307
0.9377
0.9375
0.9367
0.9362
0.9361
0.9357
0.9355
0.9350
0.9350
0.9351
0.9341
0.9349
0
3.1818
2.9012
2.8980
0.1440
0.1440
1.4435
0.1440
0.1440
0.1440
1.0092
0.1440
0.1440
0.1440
0.5765
0.1440
0.1440
0.1440
0.1440
1.1546
0.1440
0.1440
0.8651
0.1440
0.1440
0.5765
0.1440
0.1440
0.2882
0.1440
0.1440
1
3.4292
3.0674
3.0632
0.1520
0.1520
1.5245
0.1520
0.1520
0.1520
1.0655
0.1520
0.1520
0.1520
0.6086
0.1520
0.1520
0.1520
0.1520
1.2193
0.1520
0.1520
0.9134
0.1520
0.1520
0.6087
0.1520
0.1520
0.3043
0.1520
0.1520
1
3.8545
3.3948
3.3895
0.1680
0.1680
1.6857
0.1680
0.1680
0.1680
1.1779
0.1680
0.1680
0.1680
0.6728
0.1680
0.1680
0.1680
0.1680
1.3482
0.1680
0.1680
1.0098
0.1680
0.1680
0.6728
0.1680
0.1680
0.3364
0.1680
0.1680
0
4.2926
3.5744
3.5662
0.1760
0.1760
1.7689
0.1760
0.1760
0.1760
1.2350
0.1760
0.1760
0.1760
0.7052
0.1760
0.1760
0.1760
0.1760
1.4145
0.1760
0.1760
1.0587
0.1760
0.1760
0.7053
0.1760
0.1760
0.3526
0.1760
0.1760
0
1.7269
1.4500
1.4476
0.0720
0.0720
0.7215
0.0720
0.0720
0.0720
0.5043
0.0720
0.0720
0.0720
0.2880
0.0720
0.0720
0.0720
0.0720
0.5772
0.0720
0.0720
0.4324
0.0720
0.0720
0.2881
0.0720
0.0720
0.1440
0.0720
0.0720
~
∆ S = [0.3017, 0.3892, 0.4945, 0.7726] + j[0.2869, 0.3701, 0.4702, 0.7346] (HY)
~
Q ′′ (HY)
1
1.8901
1.5328
1.5298
0.0760
0.0760
0.7620
0.0760
0.0760
0.0760
0.5324
0.0760
0.0760
0.0760
0.3041
0.0760
0.0760
0.0760
0.0760
0.6096
0.0760
0.0760
0.4565
0.0760
0.0760
0.3041
0.0760
0.0760
0.1520
0.0760
0.0760
1
2.1502
1.6963
1.6924
0.0840
0.0840
0.8425
0.0840
0.0840
0.0840
0.5885
0.0840
0.0840
0.0840
0.3361
0.0840
0.0840
0.0840
0.0840
0.6740
0.0840
0.0840
0.5046
0.0840
0.0840
0.3362
0.0840
0.0840
0.1680
0.0840
0.0840
0
2.4946
1.7855
1.7794
0.0880
0.0880
0.8839
0.0880
0.0880
0.0880
0.6168
0.0880
0.0880
0.0880
0.3521
0.0880
0.0880
0.0880
0.0880
0.7071
0.0880
0.0880
0.5290
0.0880
0.0880
0.3523
0.0880
0.0880
0.1761
0.0880
0.0880
/,7(5$785$
[1] CIGRÉ WG 37.10, “Methods for Planning under Uncertainty ‘Towards Flexibility in Power
System Development’”, ÉLECTRA, No. 161, Aug. 1995, pp. 143-163.
[2] L. A. Zadeh, “Fuzzy Sets”, Information and Control, Vol. 8, 1965, pp. 338-353.
[3] A. Kaufmann, M. M. Gupta, Fuzzy Mathematical Models in Engineering and Management
Science, Elsevier, Amsterdam, 1988.
[4] ' 5DMLaL` 9RYHG YR GLVWULEXWLYQL HOHNWURHQHUJHWVNL VLVWHPL 8QLYHU]LWHW
6Y.LULOL0HWRGLM(OHNWURWHKQLaNLIDNXOWHW6NRSMH
[5] S. Rajagopalan, "A New Computational Algorithm for Load Flow Study of Radial
Distribution System", Comput. and Elect. Engng., Vol. 5, 1978, pp. 225-230
[6] V. Miranda, M. Matos, “Distribution System Planning with Fuzzy Models and Techniques”,
CIRED – 10th Intl. Conference on Electricity Distribution, Brighton, UK, 1989, pp. 472-476
[7] D. Dubois, H. Prade, Fuzzy Sets and Systems – Theory and Applications, Academic Press
Inc., Orlando, 1980.
[8] H. -J. Zimmermann, Fuzzy Set Theory - and Its Applications, 2nd revised edition, Kluwer
Academic Publishers, Boston, 1991.
[9] J. A. Momoh, X. W. Ma, K. Tomsovic, “Overview and Literature Survey of Fuzzy Set
Theory in Power Systems”, IEEE Trans. on PWRS, Vol. 10, No. 3, Aug. 1995, pp.
[10] $ 'LPLWURYVNL 5 $aNRYVNL 6WRKDVWLaND SUHVPHWND QD VRVWRMEDWD YR
UDGLMDOQLWHGLVWULEXWLYQLPUHCL)RUPXODFLMDLPRGHO3UYRVRYHWXYDZHQD
0$.26,*5(6WUXJDVHSWHPYULVWU
[11] $'LPLWURYVNL 5$aNRYVNL 6WRKDVWLaND SUHVPHWND QD VRVWRMEDWD YR
UDGLMDOQLWH GLVWULEXWLYQL PUHCL 5H^HQLH L SUDNWLaQD SULPHQD 3UYR
VRYHWXYDZHQD0$.26,*5(6WUXJDVHSWHPYULVWU
[12] A ' 'LPLWURYVNL (NRQRPVNR YUHGQXYDZH QD YDULMDQWQL UH^HQLMD VR
QHVLJXUQL SRGDWRFL UHIHUDW SRGQHVHQ ]D 9WRURWR VRYHWXYDZH QD 0$.2
6,*5(
0$.('216.,.20,7(7=$*2/(0,(/(.75,A1,6,67(0,
6,*5(6.23-(
97252629(789$:(1$0$.26,*5(
7UDMaHAHUHSQDONRYVNL%UDQNR0DWHYVNL5DGPLOD6RNRORYD(OL]DEHWD
%DGDURYVND(OHNWURVWRSDQVWYRQD0DNHGRQLMD6NRSMH
$1$/,=$1$9135(1261$05(#$9232/2>.,275(*,21,
35('/2=,=$32-$A89$:(
.5$7.$62'5#,1$
9R WUXGRW QD NUDWNR VH SUHWVWDYHQL UH]XOWDWLWH RG DQDOL]LWH QD VRVWRMEDWD YR
YLVRNRQDSRQVNDWDSUHQRVQDPUHCDYRSROR^NLRWUHJLRQ%LGHM`LVRVWRMEDWDQD91
PUHCDWDYRUHJLRQRWHNULWLaQDYU]RVQRYDQDDQDOL]LWHSUHGORCHQRHUH^HQLH]D
QHM]LQRSRMDaXYDZH
SUMMARY
In this paper the results from the analyses of the conditions of the high voltage network in the
Polog region are briefly presented. As the situation of the above mentioned regional network is
critical, the solutions for its expansion have been suggested according to the results of the
previous analysis.
.OXaQL]ERURYL3RORJSRMDaXYDZH91PUHCDWRNRYLQDPR`QRVW]DJXELQDPR`
929('
9LVRNRQDSRQVNDWD SUHQRVQD PUHCD YR SROR^NLRW UHJLRQ SRGROJ SHULRG
SUHWVWDYXYD SUHGPHW QD VWXGLUDZH L DQDOL]L 9R PLQDWRWR DQDOL]LUDQL VH SRYH`H
YDULMDQWL]DQHM]LQRSUR^LUXYDZH1RVRRJOHGGHNDXVORYLWHVHELWQRSURPHQHWL
VH SRMDYL SRWUHED GD VH QDSUDYDW GRSROQLWHOQL VRJOHGXYDZD ]D VRVWRMEDWD L
PRCQRVWLWH ]D SRMDaXYDZH 7RD H QDSUDYHQR YR J VR (ODERUDW L]UDERWHQ YR
VHNWRURW]D5D]YRML,QYHVWLFLLYR(609RRYRMWUXGVXEOLPLUDQLVHUH]XOWDWLWH
RG L]YHGHQLWH DQDOL]L L SUHGORCHQRWR UH^HQLH ]D SRMDaXYDZH QD 91WD PUHCD YR
UHJLRQRW 9R PH_XYUHPH QDSUDYHQL VH SRYH`H DNWLYQRVWL ]D RFHQD QD L]YRGOLYRVWD
QD UH^HQLHWR REH]EHGXYDZH NRULGRUL PH_XVHEQR YOLMDQLH VR SRVWRMQLWH REMHNWL
NRRUGLQLUDZHVR]DIDWLWH]DUHYLWDOL]DFLMDQDRGUHGHQLVWDULYRGRYLYRUHJLRQRW
L VO .DNR UH]XOWDW QD VHWR WRD SUHGORCHQRWR UH^HQLH H QDGJUDGHQR VR
SUDNWLaQDWDL]YRGOLYRVWLHYRID]DQDUHDOL]DFLMD
9RRYRMWUXGHWUHWLUDQVDPRGHORWQDDQDOL]DQDPUHCDWDLSUHGORCHQLWHUH^HQLD
YU]RVQRYDQDWRD3UHGORCHQRWRUH^HQLHHGRYROQRIOHNVLELOQRGDPRCHGDELGH
SULODJRGHQRVRSUDNWLaQLWHSRWUHELQDQHJRYDWDSURVWRUQDL]YRGOLYRVW
32672-1$62672-%$
3RWUR^XYDaLWHYRUHJLRQRWVHQDSRMXYDDWSUHNX76*RVWLYDUL767HWRYRNDNRL
76 -XJRKURP RG NRMD VH QDSRMXYD HGHQ RG QDMJROHPLWH PHWDOXU^NL NRPELQDWL L
YRHGQRPH_XQDMJROHPLWHLQGXVWULVNLSRWUR^XYDaLYR0DNHGRQLMD9RSHULRGRWQD
L]YHGXYDZHWR QD DQDOL]LWH L]YHVQR EH^H GHND YR UHJLRQRW `H ELGDW L]JUDGHQL
VOHGQLWH WUDIRVWDQLFL K NV/kV 76 3RORJ *RVWLYDU 76 7HWRYR L 76
7HDUFH6RL]JUDGEDWDQDQRYLWH76763RORJYR*RVWLYDUVNLRWGHOL767HWRYR
YRJUDGVNLRWUHRQQD7HWRYRVHYRPH_XYUHPHL]JUDGHQLVHSRGREUXYDDWXVORYLWH]D
QDSRMXYDZH QD SRWUR^XYDaLWH SUHNX REH]EHGXYDZH SRVLJXUQR QDSRMXYDZH QD
GLVWULEXWLYQDWD VUHGQRQDSRQVND PUHCD 1R RG GUXJD VWUDQD RVWDQXYD RWYRUHQ
SUREOHPRW ]D VLJXUQR L NYDOLWHWQR QDSRMXYDZH QD 76 YR UHJLRQRW 5HJLRQRW VH
QDSRMXYDRGGYHVWUDQLLWRD
•
•
2G 76 9UXWRN K SUHNX NV GDOQRYRG 9UXWRN*RVWLYDU7HWRYR L
9UXWRN-XJRKURP.DUDNWHULVWLaQRHGHNDYR769UXWRNVHVOHYDHQHUJLMDWDRG
0DYURYVNLWH +(& SRJROHP GHO RG HQHUJLMDWD SURL]YHGHQD YR +(& >SLOMH L
+(&*ORERaLFDNDNRLRG7(&2VORPHM,VWRWDND769UXWRNHSRYU]DQDLVR
kV PUHCD SUHNX YRGRW 9UXWRN6NRSMH 2G WRD SURL]OHJXYD L JROHPRWR
]QDaHZHNDNRLRSWRYDUHQRVWQDRYDDaYRUQDWRaND
2G6NRSMHSUHNXNV GDOQRYRG6NRSMH7HWRYRL6NRSMH-XJRKURP
=QDaDMQR H SRVHEQR ]D L]YHGEHQRWR UH^HQLH GHND ]D GHO RG YRGRYLWH YR UHJLRQRW
SRWUHEQDHUHYLWDOL]DFLMDSRUDGLQLYQDWDVWDURVWLVRVWRMED
'LVWULEXWLYQDWD SRWUR^XYDaND YR SROR^NLRW UHJLRQ VH NDUDNWHUL]LUD VR
UHODWLYQR YLVRN NRHILFLHQW QD SRUDVW VSRUHGHQR VR SURVHaQLRW WUHQG YR
0DNHGRQLMD 9R 7DEHODWD I SUHWVWDYHQL VH GLVWULEXWLYQDWD SRWUR^XYDaND L
SURVHaQLRWJRGL^HQSRUDVW]DSHULRGRW
7DEHOD I 2VWYDUHQD SRWUR^XYDaND QD HO HQHUJLMD
3RWUR^HQD (( 3RWUR^HQD (( J MWh)
J MWh)
3URVJRGSRUDVW
7HWRYR
*RVWLYDU
0DNHGRQLMD
1D VRVWRMELWHYRUHJLRQRWLLGQDWDNRQILJXUDFLMDQDPUHCDWD`H YOLMDH VWDWXVRW
QDaLQRW L REHPRW QD UDERWD NDNR L LGQLRW UD]YRM QD -XJRKURP 9R DQDOL]LWH H
]HPHQR]DJGHNDYRUHCLPQDPDNVLPDOQRRSWRYDUXYDZHYRVLVWHPRW-XJRKURP
`H LPD UHGXFLUDQ WRYDU ^WR RGJRYDUD QD UHDOQDWD VRVWRMED YR J VRJODVQR
GRJRYRURWVR(60
5DVSUHGHOEDWD QD PR`QRVWLWH L QDSRQVNLWH SULOLNL YR UHCLP QD PDNVLPDOQR
RSWRYDUXYDZH]DJYRUHJLRQRWSUHWVWDYHQLVH^HPDWVNLQD6O2aLJOHGQRH
GHND YRGRW 9UXWRN *RVWLYDU H PQRJX YLVRNR RSWRYDUHQ 6R RJOHG QD YLVRNLRW
SRUDVWQDRSWRYDUXYDZHWRYRRYRMUHJLRQKLWQRHSRWUHEQRGDVHL]YHGHSRMDaXYDZH
QD PUHCDWD YR UHJLRQRW 9R SRVWRMQDWD NRQILJXUDFLMD UHODWLYQR OHVQR L EU]R VH
GRD_D GR ]DNOXaRN ]D WHVQLWH JUOD 3UHGODJDZHWR QD UH^HQLH ]D SRMDaXYDZH H
SRNRPSOHNVHQ SURFHV VR RJOHG QD JROHPLRW EURM PRCQL NRPELQDFLL WH YDULMDQWL
RG NRL WUHED GD VH L]EHUH L SUHGORCL QDMGREURWR UH^HQLH D GD LVWRWR ELGH L
SUDNWLaQRL]YRGOLYRVRRJOHGQDVRVWRMELWHQDSURVWRURW
35,0(1(7$0(72'2/2*,-$
=D DQDOL]D QD WRNRYLWH QD PR`QRVW L QD QDSRQVNLWH SULOLNL NRULVWHQ H
SURJUDPVNLRWSDNHWCLF-OPF.CLF-OPF HNUDWHQNDQDQHJRYLWHRVQRYQL IXQNFLLL
PRCQRVWL2YRMSURJUDPVNLSDNHWRYR]PRCXYDSUHVPHWNDYRVWDFLRQDUHQUHCLPQD
WRNRYLWH QD PR`QRVW L QD QDSRQVNLWH SULOLNL EH] YRYHGXYDZH QD SRVHEQL
RJUDQLaXYDZD SUHVPHWND QD WRNRYLWH QD PR`QRVW L QDSRQVNLWH SULOLNL VR
YRYHGXYDZH QD RJUDQLaXYDZH ]D PRCQRWR SURL]YRGVWYR L QDSRQLWH YR MD]OLWH L
SUHVPHWND QD RSWLPDOQL WRNRYL QD PR`QRVW 6R QHJRYD SRPR^ VH L]YU^HQL
SUHVPHWNLWHQDVLWHYDULMDQWLYRRYRMHODERUDWLWRD
•
•
•
•
WRNRYLWHQDDNWLYQDLUHDNWLYQDPR`QRVWQL]VLWHJUDQNL
QDSRQLWHYRVLWHMD]OLYRSUHQRVQDWDPUHCD
]DJXELWH QD DNWLYQD L UHDNWLYQD PR`QRVW YR VLWH JUDQNL SRHGLQDaQR L
YNXSQR]DFHODWDPUHCD
SURYHUNDQDVRVWRMEDWDVRNULWHULXPQ
6LWHSUHVPHWNLVHUDERWHQL]DUHCLPQDPDNVLPDOQRRSWRYDUXYDZHYRLJ
9UYQRWR RSWRYDUXYDZH H XVRJODVHQR VR RaHNXYDQLRW SURJQR]LUDQ SRUDVW ]D
UD]JOHGXYDQLRWSHULRG9RSUHVPHWNLWHQDPRCQLWHQRYLYDULMDQWLYRL
J SULIDWHQLVHQRYLWH76 YR UHJLRQRW =D SRVWRMQDWD VRVWRMED L ]D SUHGORCHQLWH
YDULMDQWLQDSUDYHQLVHGRSROQLWHOQLSUHVPHWNLGDVHRFHQLQLYQDWDRVHWOLYRVWQD
SURPHQLYRVWUXNWXUDWDQDL]YRULWHSRVHEQRQD+(&9UXWRNNRMVHRaHNXYDGDLPD
QDMJROHPRYOLMDQLH
$1$/,=,5$1,9$5,-$17,=$32-$A89$:(
=DSRMDaXYDZHWRQDPUHCDWDYRUHJLRQRWDQDOL]LUDQLVHVOHGQLWHSULVWDSL
•
•
•
9DULMDQWL VR L]JUDGED QD QRY YRG RG 9UXWRN SUHPD SRWUR^XYDaNLWH
FHQWULYRUHJLRQRW
YDULMDQWL VR VHaHZH QD SRVWRMQLRW YRG 2VORPHM p 9UXWRN L QD WRM QDaLQ
GLUHNWQR SRYU]XYDZH QD 7(& 2VORPHM VR SRWUR^XYDaLWH YR 3RORJ 76
*RVWLYDU LOL 76 3RORJ L RVWYDUXYDZH QD QRYD YUVND 76 9UXWRN 76
*RVWLYDULOL3RORJ
NDNRLNRPELQDFLMDQDGYHWHRVQRYQLNRQFHSFLL
9R7DEHODWDIIGDGHQLVHL]EUDQLYDULMDQWLL]DJXELWHQDPR`QRVWYRFHODWDPUHCD
]DGHILQLUDQLWHUHCLPLYRJLYRJ
7DEHODII9DULMDQWL]DSRMDaXYDZHQD910UHCDYRSROR^NLRWUHJLRQ
9DULMDQWD (OHPHQWL]DSRMDaXYDZH
=DJXEL =DJXEL
MW)
MW)
3RVWRMQDVRVWRMED
24.07
-
9UXWRN*RVWLYDU
23.97
-
9UXWRN3RORJ
23.83
-
9UXWRN7HWRYR
23.58
-
9UXWRN7HWRYR
23.53
3UHVHNQDYRG
- 2VORPHM9UXWRN
- 9UXWRN*RVWLYDU
- 2VORPHM3RORJ
- 2GYRG*RVWLYDU7HWRYR
9OH]L]OH]YR3RORJ
- 9UXWRN3RORJ
- 2VORPHM3RORJ
- 2GYRG*RVWLYDU7HWRYR
9OH]L]OH]YR3RORJ
- 9UXWRN3RORJ
- 2VORPHM*RVWLYDU
- 2GYRG*RVWLYDU7HWRYR
9OH]L]OH]YR3RORJ
- 9UXWRN*RVWLYDU
- 2VORPHM3RORJ
- 3RORJ7HWRYR
- 9UXWRN3RORJ
- 2VORPHM*RVWLYDU
- 3RORJ7HWRYR
- 9UXWRN3RORJ
- 3RORJ7HWRYR
31.99
30.35
23.52
23.50
29.61
23.58
23.41
29.51
23.71
30.00
23.86
30.08
1DVOLNLWH]DLOXVWUDFLMD^HPDWVNLVHSUHWVWDYHQLVRVWRMELWHYRUHJLRQRW]D
YDULMDQWLWHLYRJ
6RGHWDOQLWHDQDOL]LVHSRNDCXYDGHNDVHNRMDRGDQDOL]LUDQLWHYDULMDQWLSRYROQR
GHOXYD QD VRVWRMEDWD YR UHJLRQRW SRVHEQR QD UDVWHUHWXYDZH QD YRGRW 9UXWRN
*RVWLYDU1RRaLJOHGQRHGHNDNDMUH^HQLDWDVRQRYYRGNRMSRD_DRG9UXWRNLPDPH
VRVWRMED GD SUL LVSDG QD WRM QRY YRG GRD_DPH QD SRaHWQD VRVWRMED ,VWR WDND YR
VHNRMDRGRYLHYDULMDQWLLPDPHYRGNRMHSRYH`HRSWRYDUHQRGGUXJLWH2G7DEHODII
PRCH GD VH YLGL GHND ]DJXELWH QD PR`QRVW NDM RYLH YDULMDQWL UD]OLaQL RG K VH
QH^WRSRYLVRNL
*UXSDWD QD DQDOL]LUDQL YDULMDQWL K VH ]DVQRYDDW QD LGHMDWD GD GHO RG
SURL]YRGVWYRWRYR ]DSDGQD 0DNHGRQLMD VH QDVRaL SRGLUHNWQR NRQ SRWUR^XYDaNLWH
FHQWUL YR SROR^NLRW UHJLRQ 7RD QDMHGQRVWDYQR VH L]YHGXYD VR VHaHZH QD YRGRW
2VORPHM9UXWRN2YDUH^HQLHGRVHJDQHHUD]JORHGXYDQRLSUHWVWDYXYDRULJLQDOQD
LGHMDQDRYDLVWUDCXYDZH$QDOL]LWHSRNDCXYDDWGHNDRYLHYDULMDQWLVHSRYROQLL
GDYDDW QDMGREUL UH^HQLD , RG 7DEHODWD II H YLGOLYR GHND YDULMDQWDWD LPD
QDMPDOL ]DJXEL 3RNUDM WRD VH UDVWHUHWXYD L 76 9UXWRN VR ^WR VH RYR]PRCXYD
SRHGQRVWDYQR SULID`DZH QD QRYRWR LGQR SURL]YRGVWYR RG ]DSDGQD 0DNHGRQLMD 2G
RYDDJUXSDQDYDULMDQWLSUHGQRVWNDNRQDMSRYROQDHGDGHQDQDYDULMDQWDWDVRNRMD
VR VHaHZHQDYRGRW2VORPHM9UXWRNVHSRYU]XYD2VORPHMVRQRYDWD76 3RORJ D VR
GUXJLRWNUDNVHRVWYDUXYDYWRUDYUVNDQD769UXWRNVR76*RVWLYDU763RORJVR
QRYYRGVHSRYU]XYDVR767HWRYR.DNRDOWHUQDWLYDUD]JOHGXYDQDHYDULMDQWDWD
YR NRMD 2VORPHM VH SRYU]XYD VR 76 *RVWLYDU D 9UXWRN VR 76 3RORJ ,VWD
RVWDQXYD YUVNDWD QD 76 3RORJ VR 76 7HWRYR 9R SRGRFQHCQLWH UD]JOHGXYDZD L
RFHQND QD SUDNWLaQDWD L]YRGOLYRVW SRYU]DQR VR REH]EHGXYDZH QD NRULGRUL
]DIDWL]DUHYLWDOL]DFLMDLGUSUHGORCHQRHSRMDaXYDZHWRGDVHUHDOL]LUDVSUHPD
YDULMDQWDWD =D RYLH YDULMDQWL QDSUDYHQL VH VLWH SURYHUNL SUL LVSDG QD YRG L
RVHWOLYRVW QD SURPHQD QD VWUXNWXUDWD QD L]YRULWH 3UL VLWH UHCLPL
RSWRYDUXYDZHWR QD YRGRYLWH L QDSRQVNLWH SULOLNL VH ]DGRYROLWHOQL L QH EDUDDW
GRSROQLWHOQLPHUNL
=$./8A2.
9U]RVQRYDQDL]YU^HQLWHGHWDOQLDQDOL]LSUHGORCHQDHNRQFHSFLMD]DSRMDaXYDZH
QDPUHCDWDYRUHJLRQRWVRVHaHZHQDSRVWRMQLRWYRG2VORPHM9UXWRNLSRYU]XYDZH
QD 2VORPHM GLUHNWQR VR 76 *RVWLYDU LOL VR QRYDWD 76 3RORJ RG HGQD VWUDQD L
SRYU]XYDZHQD9UXWRNVR763RORJLOLYWRUDYUVNDVR76*RVWLYDUVRRGYHWQR9R
GYHWHDOWHUQDWLYL763RORJVHSRYU]XYDVR767HWRYR9DULMDQWLL
6R YDNYRWR UH^HQLH VH RYR]PRCXYD SRYU]XYDZH QD 7(& 2VORPHM GLUHNWQR VR
SRWUR^XYDaNLWH FHQWUL SRMDaXYDZH QD YUVNDWD QD 9UXWRN VR UHJLRQRW NDNR L
RVORERGXYDZH QD PRCQRVW ]D UD]YRM QD YUVNLWH QD 76 9UXWRN VR LGQLWH L]YRUL YR
]DSDGQD0DNHGRQLMD
1D L]YHGEHQRWR UH^HQLH `H YOLMDDW L GUXJL IDNWRUL NRL `H WUHED GD VH ]HPDW YR
SUHGYLGSRVHEQRGHORGYRGRYLWHYRWRMUHJLRQWUHEDGDVHUHYLWDOL]LUDDWNDNRL
RWHCQDWLWH PRCQRVWL ]D REH]EHGXYDZH QRYL NRULGRUL SRVHEQR YR RNROLQDWD QD
*RVWLYDU
$QDOL]LUDQLWH YDULMDQWL VH SURYHUHQL L RG HNRQRPVNL DVSHNW L SUHGORCHQLWH
UH^HQLDLRGWRMDVSHNWVHSRYROQL
.25,67(1$/,7(5$785$
(ODERUDW ]D UDVSUHGHOED QD PR`QRVWD YR ((6 YR SROR^NLRW UHJLRQ VR PRCQL
UH^HQLD7AHUHSQDONRYVNL56RNRORYD(%DGDURYVND-3HOHNWURVWRSDQVWYR
QD0DNHGRQLMD6NRSMH
(GQRSROQD^HPDQDSUHQRVQDWDPUHCDYRSROR^NLRWUHJLRQ
0DNVLPDOHQUHCLPMDQXDULJRGLQD
70,21
5,60
76 9UXWRN
76 6NRSMH 220 kV
110 kV
220 kV
110 kV
76 -XJRKURP
17/6
150/41
41,19
23,49
7,67
1,18
76 *RVWLYDU
76 7HWRYR
76 6NRSMH 76 2VORPHM
DNWLYQR RSWHUHWXYDZH
76 6DPRNRY
76 6NRSMH (MW)
UHDNWLYQR RSWHUHWXYDZH
(MVAr)
SRWUR^XYDaND QD VRRGYHWQDWD
VRELUQLFD
(MW/MVAr)
SURL]YRGVWYR QD VRRGYHWQDWD
VRELUQLFD
(MW/MVAr)
6OLND9DULMDQWDJRG
76 ?3HWURY
(GQRSROQD^HPDQDSUHQRVQDWDPUHCDYRSROR^NLRWUHJLRQ
0DNVLPDOHQUHCLPJRG
76 9UXWRN
76 6NRSMH kV
kV
220 kV
110 kV
76 -XJRKURP
80/20,5
150/41
76 6NRSMH 76 *RVWLYDU
76 3RORJ
76 7HWRYR
76 7HDUFH
76 2VORPHM
76 6DPRNRY
DNWLYQR RSWHUHWXYDZH
(MW)
UHDNWLYQR RSWHUHWXYDZH
(MVAr)
SURL]YRGVWYR QD VRRGYHWQDWD
VRELUQLFD
76 6NRSMH (MW/MVAr)
SRWUR^XYDaND QD VRRGYHWQDWD
VRELUQLFD
(MW/MVAr)
6OLND9DULMDQWDJRG
76 ?3HWURY
(GQRSROQD^HPDQDSUHQRVQDWDPUHCDYRSROR^NLRWUHJLRQ
0DNVLPDOHQUHCLPJRG
76 9UXWRN
76 6NRSMH kV
kV
220 kV
110 kV
76 -XJRKURP
80/20.5
150/41
76 6NRSMH 76 *RVWLYDU
76 3RORJ
76 7HWRYR
76 7HDUFH
76 7HWRYR 76 2VORPHM
76 6DPRNRY
DNWLYQR RSWHUHWXYDZH
(MW)
UHDNWLYQR RSWHUHWXYDZH
(MVAr)
SURL]YRGVWYR QD VRRGYHWQDWD
VRELUQLFD
76 6NRSMH (MW/MVAr)
SRWUR^XYDaND QD VRRGYHWQDWD
VRELUQLFD
(MW/MVAr)
6OLND9DULMDQWDJRG
76 ?3HWURY
(GQRSROQD^HPDQDSUHQRVQDWDPUHCDYRSROR^NLRWUHJLRQ
0DNVLPDOHQUHCLPMDQXDULJRG
76 9UXWRN
76 6NRSMH kV
kV
220 kV
110 kV
76 -XJRKURP
80/20,5
150/41
76 6NRSMH 76 *RVWLYDU
76 7HWRYR
76 3RORJ
76 7HDUFH
76 7HWRYR 76 2VORPHM
76 6DPRNRY
DNWLYQR RSWHUHWXYDZH
(MW)
UHDNWLYQR RSWHUHWXYDZH
(MVAr)
SURL]YRGVWYR QD VRRGYHWQDWD
VRELUQLFD
76 6NRSMH (MW/MVAr)
SRWUR^XYDaND QD VRRGYHWQDWD
VRELUQLFD
(MW/MVAr)
6OLND9DULMDQWD. -JRG
76 ?3HWURY
(GQRSROQD^HPDQDSUHQRVQDWDPUHCDYRSROR^NLRWUHJLRQ
0DNVLPDOHQUHCLPMDQXDULJRG
76 9UXWRN
76 6NRSMH kV
kV
76 -XJRKURP
80/20,5
150/41
76 6NRSMH 220 kV
110 kV
76 *RVWLYDU
76 7HWRYR
76 7HDUFH
76 3RORJ
76 7HWRYR 76 2VORPHM
DNWLYQR RSWHUHWXYDZH
76 6DPRNRY
(MW)
UHDNWLYQR RSWHUHWXYDZH
(MVAr)
SURL]YRGVWYR QD VRRGYHWQDWD
VRELUQLFD
76 6NRSMH (MW/MVAr)
SRWUR^XYDaND QD VRRGYHWQDWD
VRELUQLFD
(MW/MVAr)
6OLND9DULMDQWD. -JRG
76 ?3HWURY
© Copyright 2025 Paperzz