4/5/2013 Carbon, Part 3, Net Ecosystem Production • Carbon Balance of Ecosystems • NEP,NPP, GPP • Seasonal Dynamics of Ecosystem Carbon Fluxes • Carbon Flux Partitioning • ‘Chain-saw’ and ‘Shovel’ Ecology Dennis Baldocchi ESPM UC Berkeley ESPM 111 Ecosystem Ecology ESPM 111 Ecosystem Ecology 1 4/5/2013 Carbon Cycle: Above and Below Ground Links Law and Ryan, Biogeochemistry, 2005 ESPM 111 Ecosystem Ecology Active Carbon/Water Flux Measurement Sites www.fluxdata.org ESPM 111 Ecosystem Ecology 2 4/5/2013 What is the Range of Gross Primary Productivity? Published Data, April, 2011 0.06 0.05 pdf 0.04 0.03 0.02 0.01 0.00 0 500 1000 1500 2000 2500 3000 3500 4000 GPP (gC m-2 y-1) ESPM 111 Ecosystem Ecology Upper Limits of GPP GPPmax PAR gC m 2 LUE fpar Rg Rg mole C 7000 * MJ m-2 y-1 * (4.6/2) * 0.02 * 0.9 * 12 = 3477 gC m-2 y-1 Rg: incoming short wave radiation PAR: photosynthetically active radiation, 0.4 to 0.7 micron LUE: light use efficiency fpar: fraction of absorbed PAR ESPM 111 Ecosystem Ecology 3 4/5/2013 Potential and Real Rates of Gross Carbon Uptake by Vegetation: Most Locations Never Reach Upper Potential GPP at 2% efficiency and 365 day Growing Season tropics GPP at 2% efficiency and 182.5 day Growing Season FLUXNET 2007 Database How much Carbon do Ecosystems take up? Probability Distribution of Published NEE Measurements, Integrated Annually Published Data, April, 2011 0.016 0.014 0.012 n = 973 -2 -1 mean = -165 +/- 253 gC m y pdf 0.010 0.008 0.006 0.004 0.002 0.000 -1000 -500 0 500 1000 NEE (gC m-2 y-1) 4 4/5/2013 Luyssaert et al. 2007, GCB ESPM 111 Ecosystem Ecology NEP is the balance between two large fluxes GPP and ecosystem respiration Chapin et al. ESPM 111 Ecosystem Ecology 5 4/5/2013 Seasonal change in daily NEE for a temperate deciduous forest Harvard Forest: 1991-2000 100 -1 -1 NEE (kg ha d ) 50 0 -50 -100 0 50 100 150 200 250 300 350 400 Day Data of Wofsy et al; Urbanski et al 2007 JGR ESPM 111 Ecosystem Ecology Season Course in Daily GPP and Reco for a temperate deciduous forest H a rv a rd F o re s t, 1 9 9 2 -2 0 0 2 -1 4 0 GPP (kgC ha d ) -1 2 0 -1 -1 -1 0 0 -8 0 -6 0 -4 0 -2 0 0 0 50 100 150 200 250 300 350 400 day 100 -1 -1 Reco (kgC ha d ) 80 60 40 20 0 0 50 100 150 200 250 300 350 400 day Data of Wofsy et al; Urbanski et al. JGR 2008 ESPM 111 Ecosystem Ecology 6 4/5/2013 Seasonal Patterns Vary with Plant Functional Type 4 FN (gC m-2 d-1) 2 0 -2 Deciduous forest Evergreen forest Macchia Perennial grassland Annual grassland Crop (wheat) Tundra -4 -6 -8 0 50 100 150 200 250 300 350 Day ESPM 111 Ecosystem Ecology Net Ecosystem Carbon Exchange of Deciduous Forests Scales with Length of Growing Season Temperate and Boreal Deciduous Forests Deciduous and Evergreen Savanna 200 -200 -2 -1 FN (gC m yr ) 0 -400 -600 -800 -1000 50 100 150 200 250 300 350 Length of Growing Season, days Baldocchi, Austral J Botany, 2008 7 4/5/2013 Does Net Ecosystem Carbon Exchange Scale with Photosynthesis? 1000 750 FN (gC m-2 y-1) 500 250 0 -250 -500 -750 -1000 0 500 1000 1500 2000 2500 3000 3500 4000 FA (gC m-2 y-1) Ecosystems with greatest GPP don’t necessarily experience greatest NEE Baldocchi, Austral J Botany, 2008 Ecosystem Respiration Scales with Ecosystem Photosynthesis, But with an Offset by Disturbance 4000 Undisturbed Disturbed by Logging, Fire, Drainage, Mowing 3500 2500 -2 -1 FR (gC m y ) 3000 2000 1500 1000 500 0 0 500 1000 1500 2000 -2 2500 3000 3500 4000 -1 FA (gC m y ) Baldocchi, Austral J Botany, 2008 8 4/5/2013 Interannual Variations in Photosynthesis and Respiration are Coupled Interannual Variability in FN 1000 Coefficients: b[0] -4.496 b[1] 0.704 r ² 0.607 n =164 d FR/dt (gC m-2 y-2) 750 500 250 0 -250 -500 -750 -750 -500 -250 0 250 500 750 1000 d FA/dt (gC m-2 y-2) Baldocchi, Austral J Botany, 2008 GPP and Climate Drivers Climate explains 70% of variation in GPP Luyssaert et al. 2007, GCB ESPM 111 Ecosystem Ecology 9 4/5/2013 NPP and Climate Drivers Climate explains 35% of variation in NPP Luyssaert et al. 2007, GCB ESPM 111 Ecosystem Ecology NEP and Climate Drivers Climate explains 5% of variation in NEP Luyssaert et al. 2007, GCB ESPM 111 Ecosystem Ecology 10 4/5/2013 Disentangling roles of Age, Climate and N deposition Magnani et al 2007 Nature ESPM 111 Ecosystem Ecology Net Ecosystem C Exchange is a Function of Time Since Disturbance Harvard Forest 1800 Carbon Flux (gC m-2 y-1) 1600 1400 1200 FN 1000 0 FA FR -200 -400 -600 1990 1992 1994 1996 1998 2000 2002 2004 2006 Year Urbanski et al. 2007, JGR ESPM 111 Ecosystem Ecology 11 4/5/2013 Net Primary Production and Stand Age He et al. 2012 GBC ESPM 111 Ecosystem Ecology On to Ecosystem Respiration ESPM 111 Ecosystem Ecology 12 4/5/2013 The Ratio between Plant Respiration and Photosynthesis is Constant: Regardless of Plant Size, Treatment etc Emerging and Useful Ecological Rules Gifford, 1994, Australian J Plant Physiol ESPM 111 Ecosystem Ecology Fundamentals of Soil Respiration Kyuzakov ESPM 111 Ecosystem Ecology 13 4/5/2013 Soil Respiration and Temperature Note how Variance increases with T, especially after Ps starts! deForest et al 2006 IntJ Biomet ESPM 111 Ecosystem Ecology Soil Respiration, Temperature and Soil Moisture Xu and Qi, 2001, Global Change Biology ESPM 111 Ecosystem Ecology 14 4/5/2013 Soil Respiration and Soil Moisture Xu and Qi, 2001, Global Change Biology ESPM 111 Ecosystem Ecology Roles of Drought and Temperature on Soil Respiration Reichstein et al. 2003, GBC ESPM 111 Ecosystem Ecology 15 4/5/2013 Environmental Controls on Respiration: Temperature, Soil Moisture, Growth/Reproduction, Rain-Induced Microbial Activity 2.0 Fast growth period data Reco/Rref 1.5 Rain pulse 1.0 0.5 0.0 0.0 0.1 0.2 0.3 0.4 -3 Soil volumetric water content (m3 m ) Xu + Baldocchi, 2003 AgForMet ESPM 111 Ecosystem Ecology Respiration: Temperature and acclimation Respiration of a cold Boreal Ecosystem, at 10 C, Is similar to a warm Temperate Ecosystem at 20 C Enquist et al. 2003, Nature ESPM 111 Ecosystem Ecology 16 4/5/2013 Respiration and Temperature: A role for fast-photosynthesis Tonzi Open areas Tonzi Under trees 0.50 1.7 14:50h 0.45 12:50h Under trees DOY 211 1.6 12h 0.40 1.5 0.35 16h 10h 1.4 0.30 20h 1.3 Fo=0.037e0.0525T, Q10=1.69, R2=0.95 0.25 6h 6h 1.2 0.20 0.15 30 35 40 45 50 24h 0.0479T 2 Fu=0.337e , Q10=1.61, R =0.80 1.1 25 30 o 35 Soil temperature (oC) Soil tempreture ( C) Tang, Baldocchi, Xu, 2005, GCB ESPM 111 Ecosystem Ecology On Annual Scales Soil Respiration Scales with Photosynthesis Raich 2000 Tellus Janssens et al 2001 GCB ESPM 111 Ecosystem Ecology 17 4/5/2013 Rain Pulses: Heterotrophic Respiration 5 C Efflux (gC m-2 d-1) 4 8 mm 12.7 mm 61 mm 12 mm 3 mm 3 2 1 0 -10 -5 0 5 10 15 20 25 30 Days After Rain Pulse Xu, Baldocchi, Tang, 2004, GBC ESPM 111 Ecosystem Ecology Photodegradation Austin et al 2010 PNAS ESPM 111 Ecosystem Ecology 18 4/5/2013 Concluding Points GPP scales with Available Sunlight so there are upper Limits to GPP, set by Length of Growing Season, Temperature and Water Most (80%) Assimilated Carbon is lost by Autotrophic and HeterTrophic Respiration Net Carbon Fluxes are a Function of Weather, Structure and Function And Time Since Disturbance Soil Respiration tied to Temperature and Moisture, and recent Photosynthesis…Rain can Induce Pulses! ESPM 111 Ecosystem Ecology ‘Chain-Saw’ Carbon Balance, 101 C Gains Losses t Gains GPP Losses Re spiration LitterFall Herbivory RootTurnover VOC _ Emissions Fire Harvest ) C |annual ~ WoodC SoilC t ESPM 111 Ecosystem Ecology 19 4/5/2013 Carbon Allocation of Forests Litton et al., 2007 ESPM 111 Ecosystem Ecology But Partitioning of Carbon is Poorly related to Biomass Litton et al., 2007 ESPM 111 Ecosystem Ecology 20 4/5/2013 NPP Biometry • NPP=GPP-Ra • NPP=Live mass increment (L) + Detritus (D) + Herbivory (H) • NEP = (L + D +H)-Rhetero • Soil Carbon Store=Detritus-Rhetero • dCarbon = Wood Increment + Soil Carbon Store • NEP ~ dCarbon – H=0 ESPM 111 Ecosystem Ecology Caveat Emptor • Few of the NPP components are measured, or measured well, in practice – – – – – – – Litterfall Bole Increment Labile Carbon is not measured in wood increment ANPP Convert bole increment to gC Small diameter trees ignored, < 10 cm diameter Below ground components often ignored ESPM 111 Ecosystem Ecology 21 4/5/2013 Biometry and Eddy Covariance NEP converges on Long Time Scales Gough et al 2008 AgForMet ESPM 111 Ecosystem Ecology •NEP,ec=GPP-Reco NEP = (L + D +H)-Rhetero Curtis et al, 2002, AgForMet ESPM 111 Ecosystem Ecology 22 4/5/2013 Chapin et al 23
© Copyright 2026 Paperzz