Document

УДК 546.185:543.226
THE THERMAL TRANSFORMATIONS
OF AQUAAMMINE COBALT(II)-ZINC PHOSPHATES
ХІМІЯ
N.M. Prokopchuk, V.A. Kopilevich, L.V. Voitenko, D.A. Savchenko.
of Analytical and Bio-Inorganic Chemistry & Water Qualit
National University of Life and Environmental Sciences of Ukraine,
UDC 546.185:543.226
Departament
THE THERMAL TRANSFORMATIONS
TheAQUAAMMINE
mixed-cation complex
aquaammine phosphates
of general
OF
COBALT(II)-ZINC
PHOSPHATES
CoxZn3-х(PO4)2·nNH3·mH2O were prepared by exposing of solid M3(PO4
2+
N.M.
Prokopchuk,
L.V. Voitenko,
D.A. of
Savchenko.
(M=Co
, Zn2+V.A.
) toKopilevich,
a saturated
atmosphere
ammonia in a dessicator. The
National
University
of
Life
and
Environmental
Sciences
of
transformations of this series were studied in theUkraine
range 20…660°C.
The mixed-cation complex aquaammine phosphates of general formula
CoxZn3-x(PO4)2•nNH3•mH2O were prepared by exposing of solid M3(PO4)2·nH2O
2+, Zn2+) to a saturated atmosphere of ammonia in a dessicator. The thermal
(M=Co
Introduction
transformations of this series were studied in the range 20…660°C.
CoxZn3-х(PO4)2·nNH3·mH2O is a member of a large family of aqua
phosphates
[1,xZn2],
isolated
(from ammonia
solution)
or “gaseous-so
•mH“wet”
General
formula of
compounds
is
Introduction. Co
3-x(PO
4)2•nNH3of
2O
is saturating
a member ofofa solid
large family
of
aquaamZn
(PO
)
•nNH
•mH
O,
where
Co
x
3-xphosphates
4 2
3 in ammonia
2
powder mix of neutral
atmosphere
mine phosphates [1, 2], isolated of “wet” x=1.5÷2.5; n=3.4÷4.3; m=5.2÷7.7. Table 1
Determining
natureorof“gaseous-solid”
coordinate arrangement
strength ofof isolated
bonding it wa
(from
ammonia solution)
shows chemicaland
composition
the
wide studies
of thermal
transformations
of the described phosphates.
(by
saturating
of solid powder
mix of neutral
compounds.
phosphates in ammonia atmosphere) ways.
It was studied the thermal transformations
Determining nature of coordinate arrange- of Aquaammine Cobalt(II)-Zinc phosphates
Experimental
ment
and strength of bonding it was made of noted above compositions. Thermolysis of
Aquaammine
Cobalt(II)-Zinc
phosphates
synthesized
Co3(PO4)2·8H
the
wide studies of thermal
transformations
Co2.0Zn1.0were
(PO4)2•3.8NH
is analyzed
3•6.7H2O of
ofZn
the (PO
described
phosphates.
in
details.
3
4)2·4H2O solid powder mixture by saturation with gaseous ammonia
Experimental. Aquaammine Cobalt(II)Thermal transformations of compounds
hermetic
ally packed
dessicatorofduring
30 days
Thethermal
molar analysis
of ratio Co2+
Zinc
phosphates
were synthesized
were studied
by [3].
complex
mixtures
is2Otaken
1.5:0.5
till 2.5:1.5.
The products
are microcrystalline
Co
and from
Zn3(PO
(DTA+TG+DTG)
using a Q-1500D
derivato3(PO4)2•8H
4)2•4H2O
solid
powder
mixture
by
saturation
with
gasgraph.
The
samples
were
heated
in
dark-pink powder. General formula of compounds is CoxZn3-хair.
(POIn4)2·nNH3
eous ammonia, in the hermetic ally packed experiments with a constant heating rate of
where during
x=1.5÷2.5;
n=3.4÷4.3;
1 shows
chemical
dessicator
30 days [3].
The molar m=5.2÷7.7.
of 5°C/min, Table
the samples
(0.5 g) were
placed in compos
2+
2+
isolated
compounds.
ratio
Co :Zn
in mixtures is taken from covered cylindrical platinum crucibles.
1.5:0.5 till 2.5:1.5. The products are microOrder of thermal transformations was
crystalline pink or dark-pink powder. estimated by using data of chemical analysis
Таble 1 Chemical composition of Aquaammine Cobalt(II)-Zinc phospha
Таble 1. Chemical composition of Aquaammine Cobalt(II)-Zinc phosphates
Index of compounds
Found, wt %:
sample 1
sample 2
sample 3
Calculated, wt %:
for Co2.5Zn0.5(PO4)2·3.4NH3·7.7H2O
for Co2.0Zn1.0(PO4)2·3.8NH3·6.7H2O
for Co1.5Zn1.5(PO4)2·4.3NH3·5.2H2O
50
|
ISSN 20789912
CoO
Product composition
ZnO
P 2O 5
NH3
H2O
33.08
26.82
20.50
7.16
14.64
22.42
24.96
25.28
26.06
10.04
11.45
13.51
24.41
21.45
17.14
33.10
26.82
20.68
7.19
14.64
22.46
25.08
25.28
26.12
10.09
11.45
13.54
24.52
21.45
17.18
Том 6, №56, 2014
І ПРИРОДОКОРИСТУВАННЯ
It was studiedБІОРЕСУРСИ
the thermal
transformations of Aquaammine Cobalt(
phosphates
of
noted
above
compositions.
Thermolysis
ХІМІЯ
N.M. Prokopchuk, V.A. Kopilevich, L.V. Voitenko, D.A. Savchenko
of calcinated products and quantitative
DTG
paper chromatography [4, 5]. Chemical
600
composition of starting reagents and syntheТ
sized compounds was determined using
photometry (Co2+) [6], inverse chronopo295
tentiometry (Zn2+) [7], gravimetry (Р2О5)
240
300
193
DTA
[8] and modified distillation in a Seren'ev
473
101
652
apparatus (NH3) [9–11]. The water content
144 173
was analyzed as the difference between the
weight loss during calcination at 750°С for 2
m,0
n,
3
%
h and the NH3 content.
mol
0
50
100

IR spectra were measured on a Specord
900
6
75-IR spectrophotometer using samples prepared as pellets with KBr where the analyte
1
concentration was 0.2–0.3 wt % [12].
2
4
X-ray diffraction (XRD) studies were carried out with a DRON-UM1 diffractometer
600
(CuKα radiation, 2Θ 4-80°, scan step of 0.05°,
2
counting time of 9 s per data point) with a

graphite-crystal monochromator mounted
on the diffracted beam line. The measured
300
0
diffraction peaks were fit by the pseudo-Voigt


0
50
100 
function with the isolation of the Kα1 compot, C
1 Heating
curves DTA
and DTG
of and
Co ZnDTG
(PO )of
3.8NH 6.7H O:
nent. The indexing of X-ray absorption peaks Fig.
Fig.
1. Heating
curves
DTA
m – mass lose (% wt), n –change of substance amount (mol), Т – temperature;
(PO4)2corresponding
3.8NH36.7H
2.0Zn
2O:of 1 – weight lose TG;
and the refinement of unit cell periods were Co
– points
of1.0
sampling,
values
Δmof–NH
mass
wt),
–change
of at
substance
і 3 –lose
loses(%
of H
O ofΔn
dynamic
heating
a rate of 2.5 °C/min.
done according to the Ritveld method using2 – loses
amount (mol), Т – temperature; ○ – points of samthe PowderCell 2.4 software [13].
pling, corresponding values of 1 – weight lose TG;
All calcinated
in3;the
°С are heatcrystalline (Fig. 2
loses of NH
3 – range
loses of21…101
H2O of dynamic
Results and discussion. Thermolysis
of 2 –products
inginitial
at a rate
of
2.51.0
°C/min.
(PO
1),
iso-structural
to
Co
2.0Zn
4)2·3.8NH3·6.7H2O and to Co3(PO4)
Co2.0Zn1.0(PO4)2•3.8NH3•6.7H2O was studied
[14]. At 144-295°С the total amorphization was observed (Fig. 2, curve 2). P
in the temperature range 21-650°С (Fig. 1). total amorphization was observed (Fig. 2,
of heating after 473 are crystalline (Fig. 2, curve 3, 4).
According to DTA and DTG data, the thermal curve 2). Products of heating after 473 are
transformations were accompanied by a few crystalline (Fig. 2, curve 3, 4).
IR spectra of sample preparation are
endothermic effects: weak defined with minimum at 80 °С and several powerful endoeffects given at Fig. 3. Identification of absorption
with minima at 127, 160, 220°С. Several consis- bands was done on the basis of comparative
tent series of effects were observed. Endothermic analysis of IR spectra for the series of monoeffects had superimposed into exothermal ones phosphates and diphosphates [15] and
at 250–300°С and at 350–500°С powerful exoef- ammine complexes of the transition metals
fects are shown at DTA curve with maxima at [16, 17]. It was determined, that IR spectra
396 and 402°С, processes accompanied weight of products of heating till 473°С include
band around 1450 cm-1. This band arises
loss of sample at TG curve.
All calcinated products in the range from the bending mode of an NH3 molecule
21…101 °С are crystalline (Fig. 2, curve 1), coordinated to a metal ion. Noted band disiso-structural
to
initial appeared only after complete evaporation of
Co2.0Zn1.0(PO4)2•3.8NH3•6.7H2O and to ammonia. All spectra included bands correCo3(PO4)2•8H2O [14]. At 144–295°С the sponded to antisymmetric and symmetric
o
2.0
3
Том 6, №56, 2014
1.0
4 2
3
2
2
БІОРЕСУРСИ І ПРИРОДОКОРИСТУВАННЯ
ISSN 20789912
|
51
3
2
ХІМІЯ
T, %
N.M. Prokopchuk, V.A. Kopilevich, L.V. Voitenko, D.A. Savchenko
1
I
6
5
4
3000
2000
1000
1
I
4000
3
2
-1
, cm
6
2
10 of heated
20 samples30taken at: 652
40
50 (2), 29560
(3), 240
Fig. 3 IR spectra
(1), 473
5 (4) °С.
4
Fig. 2 Xray
patterns
of: Co2.0Zn1.0in
(PO
) 3.4NH
5.2H
O (1),
Co2.0Zn1.0(PO
) 0.6NH30.9H2of
O (2),
4 2
3
2
4 2
Table
3 Changes
the
anion
and
chemical
composition
Co2.0Zn1.0(PO4)20.1NH3 (3), Co2.0Zn1.0(PO4)2 (4), Co2,5Zn0,5(PO4)2 (5), Co1,5Zn1,5(PO4)2 (6).
Co2.0Zn1.0(PO4)23.8NH36.7H2O during dynamic heating 3
Number
2 of
Anion
IR spectra
Fig. 3. Identification
of
molecules lost
Sampling of sample preparation are given at
composition
perspectra
formula
Chemical
analysis
1
absorptiontemperature,
bands was done on
the basis
ofdata
comparative (P
analysis
of
IR
for
the
O
),
%
wt
2 5
unit, mol
°С
series of monophosphates
and diphosphates [15] and ammine
complexes2of the
NH3 60 H2O
PO43- 50P2O7410
20
30
40
transition metals [16, 17]. It was determined, that IR spectra of products of heating
21
2.0CoO·1.0ZnО·P2O5·3.8NH
·6.7H2O
100.00
–
0
0
band
arises
from
mode
of 2O
till 473°С
include
around
cm-1. 3This
Fig. 2. X-ray
patterns
of: band
Co2.0Zn
35.2H
Co2.0
Zn1.0the
(PObending
1.0(PO1450
4)23.4NH
2O (1),
4)20.6NH
30.9H
4) (6).
Fig.
2 Xray
patterns
of:
Co
ZnZn
(PO
) 23.4NH
5.2H
O2,5
(1),
Co
Zn 4(PO
) 0.6NH
0.9H
O (2),
(2), Co2.0
)

0.1NH
(3),
Co
(PO
)
(4),
Co
Zn
(PO
)
(5),
Co
Zn
(PO
101
2.0CoO·1.0ZnО·P
O
·3.4NH
·5.2H
O
100.00
–
0.4
1.5
54
3ion.
2Noted
1.0(PO
4
2
3
2.0
1.0
2
0,5
2
1,5
1,5
2
anZnNH
molecule
coordinated
to
a
metal
band
disappeared
only
after
3
Zn (PO ) 0.1NH (3), Co Zn (PO ) (4), Co Zn (PO ) (5), Co Zn (PO ) (6).
completeCoevaporation
of ammonia.2O5All
spectra
corresponded
to
144
2.0CoO·1.0ZnО·P
·2.9NH
100.00 bands
–
0.9
3.1
3·3.6H2O included
3-1
group
(1050-710
cm
)
and
bonds
antisymmetric
and
symmetric
vibrations
of
PO
4
-1
32.0CoO·1.0ZnО·P
·2.1H2O
100.00
– Crystalline
1.4
4.6 compound
2O5·2.4NH
group
cm
) 3TG
1).
vibrations of PO4 173
-1 (1050–710
IR spectra
preparation
are curve
given (Fig.
at Fig.
3. Identification
of
Me–O
(near 500ofcmsample
).
193 500 2.0CoO·1.0ZnО·P
·1.9H2O
100.00
– lost
1.90.4 4.8
and bonds Me–O (near
cm-1).
at 101°С
mol of ammo2O5·1.9NH3sampled
of weight
wasbasis
studied
the range 80-550°С
is observed
absorption Process
bands was
done loss
on the
of in
comparative
analysisand
of IR
spectra at
for the
Process of weight
was studied2O5in
more
1H
according
240 loss 2.0CoO·1.0ZnО·P
·1.3NH3nia
·1.4H2and
O
100.00 than
2.52O mol,
TG
curve
(Fig.
1). Crystalline
compound
sampled
at 101°С
lost– 0.4 mol
of5.3
ammonia
series
of
monophosphates
and
diphosphates
[15]
and
ammine
complexes
of 1):
the
the range
80–550°С
is observed
to the chemical
analysis
2.0CoO·1.0ZnО·P
·0.6NH
97.04 data
2.96
3.2 data
2O
3·0.9H2O
O mol,
to5at
the chemical
analysis
(Table
2):5.8 (Table
and more
than295
1 Hand
217].
transition
metals
[16,
It according
was determined,
thato IR
spectra
of
products
of heating
101 C
-1
100.0
3.6
2O5·0.14NH
Zn1.0(NH
)3.8(H
(PO4)

arises
0.4NHfrom
+ 1.5H
+ 6.7
[Co473
2.0
32.0CoO·1.0ZnО·P
2O)6.7
2] 3
3trace
2O
. This
band
the
bending
mode of
till 473°С include
band
around
1450
cm
+[Co
Zn
(NH
)
(H
O)
(PO
)
].
O5ion.
– disappeared
3.8
2.0
3 23.4
2 Noted
5.2 100.00
4 band
2
an NH molecule652coordinated2.0CoO·1.0ZnО·P
to a1.0metal
only after
2.0
2.0
1.0
4 2
3
1.0
4 2
2.0
1.0
3
4 2
2
2.0
2,5
0,5
4 2
1.0
4 2
1,5
3
1,5
2
4 2
3
complete
of ammonia.
All spectra
bands corresponded
to
During evaporation
subsequent
temperature
processincluded
accompanies
by endothermic
mole and about
of bonds
allprodDuring
NHamorphization
3(1050-710
group
cm-1half
)ofand
antisymmetric
and3 subsequent
symmetric
vibrations
of effect
PO43- 0.5
increasing
0.5
NH
mole and temperature
about
halfincreasing
and
the
quantity of water
lost. This process accompanies by endothermic effect and
-1
ofMe–O
all quantity
lost. This uct:
(near
500ofcmwater
). areare
amorphization of the product:
Process of weight loss was studied in the144range
80-550°С and is observed at
oC





Zn
(NH
)
(H
O)
(PO
)
]
0.5NH
O + of ammonia
[Co
2.0
1.0
3
3.4
2
5.2
4
2
3 + 1.6H
TG curve (Fig. 1). Crystalline compound sampled at 101°С lost
0.4 2mol
Zn
(NH
)
(H
O)
(PO
)
].
+[Co
2.0
1.0
3
2.9
2
3.6
4
2
analysis data (Table 2):
and more than 1 H2O mol, according to the chemical
oС
173
Next phase are attended by the sec- This
step
101
C can be represented by the





[Co
Zn
(NH
(POsecond
+2O This
[Co
Zn
(NH
(PO4)
powerful

0.5NH
0.4NH
+ 1.5H
+ step
2.0
1.0
3)(H
2.9(H
2O)
4)2] 173
3 + 31.5H
2O
2.0
1.0
3)attended
3.8
2O)
6.73.6
Next
phase
are
by
the
endothermic
effect.
С
ond powerful
endothermic
effect.
scheme:
2

(H
(PO
0.5NH
2.0Zn1.0(NH
3)2.9
2O)
3.61.0
4)2])2.4
3) +].1.5H2O +
Zn
(NH
(H
O)
(PO4)24].
+[Co
2.1
Zn
(H
can be[Co
represented
by+[Co
the
scheme:
2.02.0
1.0(NH33)3.4
2O)
5.2(PO
2
С
O)2.1
2.0Zn1.0(NH3)2.4(H2173
4)2].
(PO
0.5NH
[Co2.0Zn1.0(NH+[Co
3)2.9(H2O)3.6(PO4)2] 
3 + 1.5H2O +
During temperature
increasing
for
the
next
20°С
+[Co2.0Zn1.0(NH3)2.4(H2O)2.1(PO4)2]. 50% of all quantity of
Duringis lost:
temperature increasing for the next 20°С 50% of all quantity of
ammonia
During
temperature
increasing for the next 20°С 50%
of all quantity of ammonia is lost:
ammonia
is
lost:
C20°С
During temperature increasing for the next
50% of all quantity of
193


 0.5NH
[Co2.0Zn1.0(NH3)2.4(H2O)2.1(PO4)2] 193
3 + 0.2H2O +

C
ammonia is
lost:
(H

 0.5NH
[Co2.0Zn1.0(NH3)2.4
(H2O)
2.1(PO
4)2]3)1.9
3 + 0.2H2O +
+[Co
2.0Zn
1.0(NH
2O)1.9(PO
4)2].
C(PO4)2].
O)
2.0Zn1.0(NH3)1.9(H2193
1.9
 0.5NH3 + 0.2H2O +
[Co2.0Zn1.0(NH+[Co
3)2.4(H2O)2.1(PO4)2] 
In
the
range
193-240°С
thermolysis
intensifies
without
changesbyinthe
anionic
(NH3)1.9(HThis
(PO4)2is].
+[Co2.0Zn1.0intensiIn the range 193–240°С thermolysis
accompanied
loss of near
2O)1.9stage
In the range
193-240°С
thermolysis
intensifies
without
changes
in
anionic
and
80%
component.
This
stage
is
accompanied
by
the
loss
of
near
70%
NH
3
2O of
fies without changes in anionic component.
70% NH3 and 80% H2O of theirH
total
quantity:
component.
stage
is accompanied
by the intensifies
loss of nearwithout
70% NH
theirIntotal
quantity:
3 and 80%
2O of
theThis
range
193-240°С
thermolysis
changes
in H
anionic
oC
their
total quantity:
240
and 80% H2O of
component.
This
is accompanied
by the loss
near
70% NH


 0.6NH
[Co2.0stage
Zn1.0(NH
oof
3)1.9(H2O)1.9(PO4)2] 240
3 +30.5H2O +
C
their total [Co
quantity:





(H22.0
O)Zn
(PO
0.6NH
(NH
2.0Zn1.0(NH3)1.9[Co
1.91.0
4)23])1.3(H2O)1.4(PO
4)2].3 + 0.5H2O +
oC
[Co
O)
(PO
2.0Zn
1.0(NH
3))1.3](H
2240
1.4
4)2].




[Co
Zn
(NH
)
(H
O)
(PO
0.6NH
2.0
1.0
3 1.9
2
1.9
4 2
3 + 0.5H2O +
| ISSN 20789912
52
6, №56, 2014
Next sample was[Co
taken
at
295°С
after
strong
exothermal
effect thatТом
is observed
БІОРЕСУРСИ
І
ПРИРОДОКОРИСТУВАННЯ
Zn
(NH
)
(H
O)
(PO
)
].
2.0
1.0
3 1.3
2
1.4
4 2
Next
sample
was(Fig.
taken
after strong
exothermal
effect that is observed
in the
DTG
curve
1).atIt295°С
is realized
two processes
simultaneously
the first is
in hydrolysis
the Next
DTGsample
curve
1). Itatis295°С
realized
two
processes
the
first is
a part(Fig.
of taken
monophosphate,
the
second
one simultaneously
– condensation
ofobserved
hydrogen
was
after
strong
exothermal
effect that is
hydrolysis
a part ofto monophosphate,
the step
second
onebe– represented
condensationbyof the
hydrogen
monophosphate
diphosphate. This
could
schemes
3
ХІМІЯ
N.M. Prokopchuk, V.A. Kopilevich, L.V. Voitenko, D.A. Savchenko
T, %
2
4
3
1
T, %
2
4000
1
3000
2000
1000
-1
-1
4000
, cm
, cm
2000
3000
1000
Fig. 3Fig.
IR3. spectra
heated
samples
at:473
652(2),(1),
(2),
IR spectra of
of heated
samples
takentaken
at: 652 (1),
295 473
(3), 240
(4) 295
°С. (3), 240 (4) °С.
Fig. 3 IR spectra of heated samples taken at: 652 (1), 473 (2), 295 (3), 240 (4) °С.
Table 3 Table
Changes
in the
anion
andchemical
chemical
composition
of
3 Changes
in the
anion and
composition
of
the 3anion
chemical
composition
of
Co2.
Zn1.0
during
dynamic
heating heating
Zn1.0
(PO
6.7H
during
dynamic
Co2.0Table
2.0Changes
4)in
23.8NH
36.7Hand
2O
4)(PO
23.8NH
2O
Co2.0Zn1.0(PO4)23.8NH36.7H2O
Sampling
temperature,
Chemical analysis data
°С
Sampling
temperature,
°С
21
101
144
Number of
during Anion
dynamic heating
PO4
21
Chemical
analysis
data
2.0CoO·1.0ZnО·P
2O5·3.8NH3·6.7H2O
molecules lost
per formula Number
Anionunit, mol
molecules
P2O74NH3
H2O
composition
100.00
(P2O
– 5), %0 wt
101
2.0CoO·1.0ZnО·P2O5·3.4NH3·5.2H2O
100.00
144
2.0CoO·1.0ZnО·P2O5·2.9NH3·3.6H2O
100.00
composition
(P2O5), % wt
3-
–3-
PO4
–
·3.8NH
·6.7H
O 100.00100.00
2O52O
1732.0CoO·1.0ZnО·P
2.0CoO·1.0ZnО·P
·2.1H
–
5·2.4NH33
2O 2
1932.0CoO·1.0ZnО·P
2.0CoO·1.0ZnО·P
5·1.9NH3·1.9H
2O
O2O·3.4NH
·5.2H
4- 1.5
0.9
3.1
P2O7
1.4–
4.6
0
0
0.4
1.5
100.00100.00
–
1.9–
4.8
240
2.0CoO·1.0ZnО·P2O5·1.3NH3·1.4H2O
100.00
2.5
5.3
295
2
97.04
3.2
5.8
0.9
3.1
1.4
4.6
1.9
4.8
2
5
3
2O
0
0.4
of
lost
per formula
unit, mol
NH3 H2O
2.0CoO·1.0ZnО·P
·2.9NH
·3.6H O
2O5O
2.0CoO·1.0ZnО·P
·0.6NH 3·0.9H O 2
5
3
2
–
100.00
2.96
–
173
4732.0CoO·1.0ZnО·P
2.0CoO·1.0ZnО·P
trace
2O5·0.14NH
3
2O5·2.4NH
3·2.1H
2O 100.0100.00
3.6–
6.7
193
652
3.8
-
2.0CoO·1.0ZnО·P2O5
2.0CoO·1.0ZnО·P2O5·1.9NH3·1.9H2O
100.00
–
100.00
–
mole and about
half2.5of all 5.3
subsequent temperature
increasing
240 During 2.0CoO·1.0ZnО·P
O NH3100.00
–
2O5·1.3NH
3·1.4H20.5
quantity of water are lost. This process accompanies by endothermic effect and
295
97.04
2.96
3.2
5.8
amorphization2.0CoO·1.0ZnО·P
of the product: 2O5·0.6NH3·0.9H2O
144 oC
 0.5NH
[Co2.0Zn
(PO
2.0CoO·1.0ZnО·P
100.0
trace
3.6
6.7
1.0(NH3)3.4(H2O)5.2
4)2] 
3 + 1.6H
2O +
2O
5·0.14NH
3 
+[Co2.0Zn1.0(NH3)2.9(H2O)3.6(PO4)2].
652
2.0CoO·1.0ZnО·P2O5
100.00
–
3.8
Next phase are attended by the second powerful endothermic effect. This step
can be represented by the scheme:
473
During subsequent temperature increasing 0.5 NH3 mole and about half of all
quantity of water are lost. This process accompanies by endothermic effect and
ISSN 20789912 |
Том 6, №56,
2014product:
53
amorphization
of the
БІОРЕСУРСИ І ПРИРОДОКОРИСТУВАННЯ
144 oC
 0.5NH3 + 1.6H2O +
[Co2.0Zn1.0(NH3)3.4(H2O)5.2(PO4)2] 
240
C near 70%
and 80%inHanionic
component.
This
stage193-240°С
is accompanied
by the loss
of
NH3changes
In[Co
the
range
thermolysis
intensifies
without
2O of

 0.6NH
2.0Zn1.0(NH3)1.9(H2O)1.9(PO4)2] 
3 + 0.5H2O +
their
total quantity:
and
80%
H2O of
component.
This stage is
accompanied
by
the
loss
of
near
70%
NH
3
[Co2.0Zn1.0(NH3)1.3(H2O)1.4o(PO4)2].
240 C
their total quantity:
[Co2.0Zn1.0(NH3)1.9(H2O)1.9(PO4)2] o 0.6NH3 + 0.5H2O +
240exothermal
C
Next sample
was
taken
at(H
295°С
after
strong
effect
that is observed ХІМІЯ
[Co
Zn
O)
(PO

4)0.6NH
[Co2.0Zn
2.0
1.0(NH
3)1.3
1.4
2].
1.0(NH
3)1.9
2O)
1.9(PO
4)(H
2] 2
3 + 0.5H2O +
N.M.
Prokopchuk,
V.A.
Kopilevich, L.V. Voitenko,
in the DTG curve (Fig. 1).[Co
It 2.0
is Zn
realized
two
processes
simultaneously
the firstD.A.
is Savchenko
(NH
)
(H
O)
(PO
)
].
1.0
3 1.3
2
1.4
4 2
hydrolysis
part ofwas
monophosphate,
– condensation
Nextasample
taken at 295°Сthe
aftersecond
strong one
exothermal
effect thatofishydrogen
observed
monophosphate
to (Fig.
diphosphate.
This
step
could
beexothermal
represented
by that
thethe
schemes
in
the
DTG
curve
1).
It
is
realized
two
processes
simultaneously
first is monoNext
sample
was
taken
at
295°С
after
strong
effect
is
observed
Next sample was taken at 295°С after
one – condensation of hydrogen
according
toachromatography
results
(Table
3):two processes
hydrolysis
part
of (Fig.
monophosphate,
the second
one – condensation
of hydrogen
in
the
DTG
curve
1).
It
is
realized
simultaneously
the
is step
strong exothermal effect that is observed
phosphate to diphosphate.first
This
monophosphate
to diphosphate.
This step
could be
by theof schemes
hydrolysis a part
of monophosphate,
the second
onerepresented
– condensation
hydrogen
in the DTG curve (Fig. 1). It is realized two
could
oC be represented by the schemes
according
to chromatography
(Table
3):295
monophosphate
to diphosphate.
This
step
could
represented

be0,7NH
[Co
(Hresults
(PO
0,5H2by
O +the schemesresults
2,0Zn1,0(NH
3)1,3first
2O)
4)2] according
processes simultaneously
the
is1,4hydroto3 + chromatography
according to chromatography
results
(Table
3):
+[Co
Zn
(NH
)
(H
O)
(PO
)
(P
O
)
].
2,0
1,0the second
3 0,6
2
0,9(Table
lysis a part of monophosphate,
o4 1,942):2 7 0,03
o 295 C
- 295 
2
o 0,7NH
[Co2,0Zn[Me
)1,3(H
; 2O +
 3OH
(PO
)] 4240)
C
MeOH
 HPO
1,0(NH
2O)
1,44(PO
2]
3 +4 0,5H
2
295 C
+[Co
Zn
(NH
)
(H
O)
(PO
)
(P
O
)
].





[Co2,0Zn
(NH
)
(H
O)
(PO
)
]
0,7NH
+
0,5H2O +
1,0 2 3 1,4
24 2 0,9
4 1,94 2 7 0,033
1,0 2,0 3 1,3
2  0,6
HPO


OoC74 (PO
 H 2) O(P O ) 2 ].
2Zn
240P
- 295
2
+[Co
(NH
)
(H
O)
4
2,0 2 
1,0 (PO 43)]
0,6
0,9MeOH
4 1,94  2HPO
7 0,03
[Me  OH
2

4 ;
240 - 295 o C
[Me  OH 2 (PO


MeOH   HPO 24 ;
4 )]  
2
4



O the range 295-473°С. All
2 HPOeffect
The strongest exothermal
is Pobserved
2 O 7  H 2in
4 
2 
4  H O
HPO

P
O
2
amount of water and most ammonia
has 2been
7 lost.2 The pre-final product of
4
thermolysis
is crystalline
accordingeffect
to X-ray
data. Tablein4 the
shows
parameters
of cells.
The
strongest
exothermal
is
observed
range
295-473°С.
The strongest exothermal effect is
parameters of cells.
This
structureAll
is isostrucZn
(PO
)
and
Co
(PO
)
[18,
This
structure
is
isostructural
to
anhydrous
Co
2
1 lost.in
4 2The
3
4 2product19].
amount The
of water
and exothermal
most ammonia
been
of
strongest
effect has
is tural
observed
the pre-final
range
295-473°С.
All
observed
in
the
range
295–473°С.
All
amount
to
anhydrous
Co
Zn1(PO
2 of this 4)2 and
Crystal
phase
trash
quantity
diphosphate-anion
3). Scheme
thermolysis
crystalline
according
toofX-ray
data.
Table
4 (Table
shows
of cells.of
amount
ofis include
water
and
most
ammonia
has
been
lost.
The parameters
pre-final
product
of water
and
most ammonia has been lost.
Co3(PO4)2 [18, 19]. Crystal phase include
stage
is:
(PO4)24 and
Coparameters
This
structureisiscrystalline
isostructural
to anhydrous
thermolysis
according
to X-rayCo
data.
shows
of 19].
cells.
2Zn1Table
3(PO4)2 [18,
The pre-final
product
of
thermolysis
is
crystaltrash quantity
of diphosphate-anion
(Table 3).
oC (Table
473
Crystal
phase
include
trash
quantity
of
diphosphate-anion
3).
Scheme
of
this
This
structure
is
isostructural
to
anhydrous
Co
Zn
(PO
)
and
Co
(PO
)
[18,
19].
2 
1
4 20,5NH +3 0,9H
4 2O +
this

(NH3)data.
] 
[Co2,0Zn
1,0X-ray
0,6(H2O)
0,9(PO
4)shows
1,94(P2O7)0,03
3is:
2
line
according
to
Table
3
Scheme
of
stage
stage
is: phase aqua
Cobalt(II)-Zinc
orthophosphates
with
another
ratioof between
cations
Crystal
include amino
trash+[Co
quantity
of diphosphate-anion
(Table
3). Scheme
this
2,0Zn1,0(NH3)0,1(PO4)2].o
473 C
stage
is:
were studied [Co
by2,0thermal
are
at Fig.
 shown
Zn1,0(NH3)0,6analysis,
(H2O)0,9(PO4DTA
)1,94(P2O7curves
)0,03] 
0,5NH3 + 0,9H
2O + 4. Curves DTG
473 otransformation,
C
at
the
final
stage
of
thermal
product
is
Sample
lost
all
NH
3
+[Co
Zn
(NH
)
(PO
)
].





Zn
(NH
)
(H
O)
(PO
)
(P
O
)
]
0,5NH
+
0,9H
[Co
2,0
1,0
3
0,1
4
2
2,0
1,0
3 0,6of2 Co
0,9
4 1,94 (PO
2 7 0,03) ·4.3NH ·5.2H
3
2O +
4, curve 1) is
registered crystalline
that thermolysis
1.5Zn
1.5
4 2 ) [Ошибка!
3
2O (Fig.
(Table 3) and isostructural
to(NH
Co32)Zn(PO
Закладка
не
44)22].
+[Co
Zn
(PO
2,0
1,0
0,1
Sample
lost
all
NH
at
the
final
stage
of
(Table
3)
and
isostructural
to
Co
Zn(PO
2 has 4)changed.
2
similar to определена.]:
the previous
of effects
at the
DTA
Sample lost 3one,
all NH3only
at the the
final intensity
stage of thermal
transformation,
product
is
thermal transformation, product
is crystalline [16]:
crystalline
(Table
3)alland
isostructural
Co2Zn(PO
неof
the finalto
stage
of2)thermal
transformation,
product
is thermolysis
Sample
lostdata
NH
4)2 [Ошибка!
From X-ray
diffraction
was
(Fig.
that
the
finalЗакладка
product
3 at found
652 oto
C Co2Zn(PO4)2 [Ошибка! Закладка не
определена.]:
crystalline
(Table
3) and
isostructural





Zn
(NH
)
(PO
)
]
0,14NH
+
Co
Zn
(PO
)
.
[Co
2,0
1,0
3 0,14
4 2 crystalline and
3 iso-structural
2,0
1,0
4 2
to Co2Zn(PO4)2 and
Co1.5Zn1.5(PO
4)2·4.3NH
3·5.2H
2O is
определена.]:
Co3(PO4)2 [18, 19].
[Co
652 oC
 0,14NH3 + Co2,0Zn1,0(PO4)2.
(NH3)amino
] 
2,0Zn1,0
0,14(PO4)2orthoCobalt(II)-Zinc
aqua
652 oCcations were studied by thermal analysis,


DTA
 0,14NH
Zn
(NH
)
(PO
)
]
)2. Fig. 4. Curves
[Co
1,0
3 0,14 between
4 2
3 + Co
1,0(PO4at
phosphates with 2,0
another
ratio
curves
are2,0Zn
shown
Table 4 X-ray data of thermolysis products
Table 3. X-ray data of thermolysis products
Chemical analysis data
2.0CoO·1.0ZnО·P2O5·
3.4NH3·5.2H2O
2.0CoO·1.0ZnО·P2O5·
2.9NH3·3.6H2O
2.0CoO·1.0ZnО·P2O5·
2.4NH3·2.1H2O
2.0CoO·1.0ZnО·P2O5·
1.9NH3·1.9H2O
2.0CoO·1.0ZnО·P2O5·
1.3NH3·1.4H2O
2.0CoO·1.0ZnО·P2O5·
0.6NH3·0.9H2O
2.0CoO·1.0ZnО·P2O5·
0.14NH3
2.0CoO·1.0ZnО·P2O5
54
|
ISSN 20789912
Parameters of cell
Cell
volume,
nm3
Structure
а, nm
b, nm
c, nm
1.001(6)
1.331(6)
0.467(2)
–
–
–
–
–
amorphous
–
–
–
–
–
amorphous
–
–
–
–
–
amorphous
–
–
–
–
–
amorphous
–
–
–
–
–
amorphous
0.754(5)
0.839(9)
0.506(2)
94.38
0.31984(3)
monoclinic
0.755(4)
0.839(0)
0.507(0)
94.28
0.30245(7)
monoclinic
γ, gr.
104.82 0.60242(6)
БІОРЕСУРСИ І ПРИРОДОКОРИСТУВАННЯ
monoclinic
Том 6, №56, 2014
Co2.5Zn0.5(PO4)2·3.4NH3·7.7H2O thermal transformations are different from
two previous objects, DTA curves testify to this fact. Near 5 endothermic effects are
Co2.5Zn0.5(PO4)2·3.4NH3·7.7H2O thermal transformations are different from
two previous objects, DTA curves testify to this fact. Near 5 endothermic effects are
observed in the range 80-200°С (Fig. 4, curve 2). Two first effects are displaced at
ХІМІЯ
more
then 200°С to higher temperature side. Final product of heating is iso-structural
N.M. Prokopchuk, V.A. Kopilevich, L.V. Voitenko, D.A. Savchenko
to Co3(PO4)2 and Co2Zn(PO4)2 [18, 19].
2
1
t, C
o
100
500
300
Fig. 4. Curves DTA Co1,5Zn1,5(PO4)2•4,3NH3•5,2H2O (1), Co2,5Zn0,5(PO4)2•3,4NH3•7,7H2O (2)
Fig. 4 Curves DTA Co1,5Zn1,5(PO4)2·4,3NH3·5,2H2O (1),
·3,4NH ·7,7H
Co Zn (PO )of
DTG registered that thermolysis
CoO2.5(2)Zn0.5(PO4)2•3.4NH3•7.7H2O therC o 1 . 5 Z n 1 . 5 ( P O 4 ) 2 • 4 . 3 N H 3 • 5 . 2 H 2 O mal transformations are different from two
(Fig. 4, curve 1) is similar to the previous one, previous objects, DTA curves testify to this
only the intensity of effects at the DTA has fact. Near 5 endothermic effects are observed
changed. From X-ray diffraction data was found in the range 80–200°С (Fig. 4, curve 2). Two
(Fig. 2) that the final product of thermolysis first effects are displaced at more then 200°С
Co1.5Zn1.5(PO4)2•4.3NH3•5.2H2O is crystalline to higher temperature side. Final product of
and iso-structural to Co2Zn(PO4)2 and heating is iso-structural to Co3(PO4)2 and
Co3(PO4)2 [18, 19].
Co2Zn(PO4)2 [18, 19].
2,5
0,5
4 2
3
2
References
1. Heterometal Ammineaqua Diphosphates /V.A. Kopilevich, I.D. Zhylyak, L.V. Voitenko et al. //
Russian J. General Chem. – 2006. - 76, № 9. – P. 1386-2392. DOI: 10.1134/S1070363206090052
2. Voitenko L.V., Zhylyak I.D., Kopilevich V.A. Double Hydrated Cobalt(II) Copper(II) and
Nickel(II) Copper(II) Ammine Diphosphates // Russian J. Applied Chem. – 2005. - 78, № 3. – P.
363-366. DOI 10.1007/s11167-005-0297-9
3. Patent 24010 (Ukraine) C01В 25/45. Double salt Zinc-Cobalt(II) aquaammine phosphate [In
Ukrainian]. / V.A.Kopilevich, N.M.Prokopchuk, L.V.Voitenko
4. Ebel J.P., Volmar Y. Paper chromatography of ortho, pyro, meta and polyphosphates // C.R.
Hebd Seances Acad. Sci. – 1951. - 233, Issue 5. – P. 415-417.
5. T. A. Belyavskaya, T. A. Bol'shova, and G. D. Brikina. Chromatography of Inorganic Substances. A
Practical Guide [in Russian]. - Vysshaya Shkola, Moscow (1986). – 207 pp.
6. Piatnitskii I.V. Analytical chemistry of cobalt (Analytical chemistry of elements). - Ann ArborHumphrey Science Publishers, 1969. – 260 pp.
7. Determination of heavy metals in aqueous ecosystems by the method of inversion chronopotentiometry / I. V. Surovtsev, V. M. Galimova, V. V. Mank, & V. A. Kopilevich. // J. Water Chemistry
and Technology. – 2009. - 31, Issue 6. – P. 389-395. DOI 10.3103/S1063455X09060071
8. ISO 6598:1985 Fertilizers – Determination of phosphorus content – Quinoline phosphomolybdate gravimetric method
9. ISO 5314:1981 Fertilizers – Determination of ammoniacal nitrogen content – Titrimetric method
after distillation
Том 6, №56, 2014
БІОРЕСУРСИ І ПРИРОДОКОРИСТУВАННЯ
ISSN 20789912
|
55
ХІМІЯ
N.M. Prokopchuk, V.A. Kopilevich, L.V. Voitenko, D.A. Savchenko
10. A Guide to Kjeldahl Nitrogen Determination Methods and Apparatus. - Labconco Corporation,
1998. – 10 pp.
11. Patent SU 688879 (1979). Seren’ev’s apparatus [in Russian].
12. Lawson K. E. Infrared Absorption of Inorganic Substances. - Reinhold Publ. Corp., New
York,1961. – 200 pp.
13. The influence of Zr alloying on the structure and properties of Al3Ti / Karpets M.V., Milman
Yu.V., Barabash O.M. et al. // Intermetallics. – 2003. - 11. - P. 241-249.
14. Riou A., Cudennecy Y., Geraulty Y. Cobalt (II) orthophosphate octahydrate // Acta
Crystallographica. – 1989. – 45. – Р. 1412-1413.
15. Atlas of Infrared Spectra of Phosphates. Double Mono- and Diphosphates / R.Ya.Mel’nikova,
V.V. Pechkovskii, E.D. Dzyuba, I.E Malashonokю. - Nauka, Moscow, 1990. – 244 p.
16. Voitenko L. V., Shchegrov L.N., Kopilevicn V.А. Production of solid phosphates of aquaammine
copper(II) and aquaammine zinc // Ukrainian Chemistry Journal. – 1992. - 58, № 3. – P. 25–28.
DOI 002468116
17. Prokopchuk N.N., Kopilevich V.A., Voitenko L.V. Preparation of double nickel(II) cobalt(II)
phosphates with controlled cationic composition // Russian J. Applied Chemistry. – 2008. - 81,
Issue 3. – P. 386-391. DOI 10.1134/S1070427208030063
18. Nord A. G. Crystallographic Studies of the Farringtonite-type phases gamma-Zn2Co1(PO4)2 and
gamma-(Zn0.5Co0.5)3(PO4)2 // Acta Crystallographica. – 1984. – № 40. – P. 191 – 194.
19. Nord A. G, Stefanidis T. Structure refinements of Co3(PO4)2. A note on the reliability of powder
diffraction studies // Acta Chemica Scandinavica, Series A: 1983. – № 37. – P. 715 – 721.
АНОТАЦІЯ
АННОТАЦИЯ
Прокопчук Н.М., Копілевич В.А.,
Войтенко Л.В., Савченко Д.А. Термічні
перетворення
акваамінофосфатів
кобальту(II)-цинку // Біоресурси і природокористування. – 2014. – 6, №5–6. – С.50 –56.
Шляхом витримування суміші твердих
фосфатів M3(PO4)2·nH2O (де M=Co2+, Zn2+)
у насиченій аміачній атмосфері в ексикаторі
було одержано змішано-катіонні комплексні
акваамінофосфати загальної формули
CoxZn3-x(PO4)2•nNH3•mH2O. Вивчено їхні
термічні перетворення в температурних
межах 20…660°C.
Прокопчук Н.Н., Копилевич В.А., Войтенко
Л.В., Савченко Д.А. Термические превращения
акфаамминофосфатов кобальта(II)-цинка //
Биоресурсы и природопользование. – 2014. –
6, №5–6. – С.50 –56.
Путем выдерживания смеси твердых
фосфатов M3(PO4)2·nH2O (где M=Co2+, Zn2+)
в насышенной аммиачной атмосфере в
эксикаторе получены смешанно-катионные
комплексные акваамминофосфаты общей
формулы
Co x Zn 3-x (PO 4 ) 2 •nNH 3 •mH 2 O.
Изучены их термические превращения в
температурном интервале 20…660°C.
56
|
ISSN 20789912
БІОРЕСУРСИ І ПРИРОДОКОРИСТУВАННЯ
Том 6, №56, 2014