MATHEMATICS Parabola 1. Distance of any point P on the parabola from the focus S is always equal to perpendicular distance of P from the directrix i.e. SP=PM. 2. Parametric equation of parabola y2=4ax is x = at2 , y = 2at. coordinates of any point (t) is (at2, 2at). 3. Different types of standard parabola Sr. No. 1. 2. 3. 4. Parabola Focus directrix y2=4ax y2=-4ax x2=4by x2=-4by (a,0) (-a,0) (0,b) (0,-b) x = -a x=a y = -b y = -b 1. Latus rectum 4a 4a 4b 4b Axis of Parabola (axis of symmetry) y=0 y=0 x=0 x=0 2. 3. 4. 2 4. For the parabola y = 4ax. a. b. c. d. e. Equation of tangent at (x1,y1) is yy1 = 2a (x + x1) Parametric equation of tangent (at21,2at1) is yt1 = x + at21 Tangent in term of slope m is y = mx + a/m and its point of contact is (a/m2, 2am) If P(t1) and Q(t2) are the ends of a focal chord then t1t2 = -1 Focal distance of a point P(x1, y1) is x1 + a. MATHEMATICS Trigonometry 28. 29. 30. 31. 32. 33. 0 30o o 45o 90o 60o sin 0 1 cos 1 0 tan 0 1 34. sin (-θ) = - sin θ; cos (-θ) = cos θ ; 120o 135o 150o 180o 0 - - -1 - -1 0 tan (-θ ) = - tan θ 35. sin (90o-θ) = cos θ cos (90o-θ)= sin θ tan (90o-θ)= cot θ cot (90o-θ) = tan θ cosec (90o-θ)=sec θ sec (90o-θ) = cosec θ sin (90o+ θ) = cos θ cos (90o + θ)= - sin θ tan (90o + θ)= - sin θ cot (90o + θ) = - tan θ cosec (90o + θ)=sec θ sec (90o + θ) = - cosec θ 36. Sin (A + B) = Sin A Cos B + Cos A Sin B Sin (A - B) = Cos A Sin B - Sin A Cos B Cos (A + B) = Cos A Cos B - Sin A Sin B Cos (A - B) = Cos A Cos B + Sin A Sin B 37. sin (180o + θ) = - cos θ cos (180o - θ) = - cos θ tan (180o-θ)= - tan θ cot ( 180o-θ) = - cot θ cosec (180o-θ) = cosec θ sec (180o- θ) = - sec θ sin(180o+θ) = - sin θ cos (180o+θ)= -cos θ tan (180o+θ) = tan θ cot (180o+θ) = cot θ sec (180o+θ) = - sec θ cosec (180o+θ) = -cosec θ 38. 2 2 2 2 sin A cos B = sin ( A+ B) + sin ( A - B) cos B sin B = sin ( A+ B) - sin ( A - B) cos A cos B = cos (A + B) + cos (A - B) sin A sin B = cos (A - B) - cos (A + B) 39. cos (A + B).cos (A - B) = cos 2A - sin 2B sin (A + B).sin (A - B) = sin 2A - sin 2B 40. sin 2θ = 2 sin θ cos θ = 41. cos 2θ = cos2θ-sin2θ = 2 cos2 θ-1 = 1 - 2 sin2θ = 42. 1 + cos 2θ = 2 cos2θ; 1 - cos 2θ = 2 sin2 θ 44. = 45. sin 3θ = 3 sin θ - 4 sin3 θ ; cos 3θ = 4 cos 3θ - 3 cos θ ; = 46. 47. 48. a = b cos C + c cos B; b = c cosA + a cos C; c= a cos B + b cos A 49. Area of triangle ABC = 50. 51. 52. 53. XII - Science - Formula Book MATHEMATICS Ellipse 1. Distance of any point on an ellipse from the focus = e (perpendicualr distance of the point from the corresponding directrix) i.e. SP= e PM. 2. Different types of ellipse. Ellipse. Foci Directrices Latus rectum Equation of axis Ends of L.R major Axis y=0 (± ae , 0) (a > b) minor Axis x=0 major Axis x=0 (0 , ±be) (a < b) minor Axis y=0 1. 2. 3. (a > b) is x = aCosθ and y = b Sinθ where θ is Parametric equation of ellipse called the eccentric angle. 4. For the ellipse , (a > b) , b2 = a2 (1 - e2) and , (a < b ) , a2 = b2 ( 1- e2) 5. For the ellipse (a > b) . Equation of tangent at (x1, y1) is . Equation of tangent in terms of its slope m is Tangent at (aCosθ , bSinθ) is 6. . . Focal distance of P(x1,y1) are SP= | a - ex1 | and S'P = | a + ex1 | MATHEMATICS Hyperbola 1. Distance of a point on the hyperbola from the focus e (perpendicular distance of the point from the corresponding directrix ) ie. SP = e PM 2. Different types of Hyperbola Hyperbola Foci Directrices L.R. End of L.R. Eqn. of axis. Transverse axis y=0 (±ae,o) Conjugate axis x = 0 Transverse axis x = 0 (0, ±be) Conjugate axis y = 0 1. 2. 3. For the Hyperbola and for 4. Parametric equations of hyperbola called the eccentric angle. , are x = a sec θ, y= b tan θ. Where θ is 5. For the hyperbola (a) Equation of tangent at are (b) Equation of tangent in terms of its slope m is (c) Equation of tangent at (a sec θ, b tan θ ) is (d) Focal distances of P ( x1,y1) are SP = l ex1 - a l and SP = l ex1 + a l MATHEMATICS Probability 1. Probability of an event A is 2. if A B are mutually exclusive then 3. P(A') = 1 - P(A) or P(A) = 1 - P(A' ) 4. If A and B are independent events 5. 6. 7. Where θ is meadured in radians 8. =
© Copyright 2026 Paperzz