Processing of Si-based heterojunction solar cells and properties of interfaces A.G. Ulyashin, M. Scherff, M. Gao, R. Sondermann, W.R. Fahrner University of Hagen, Germany Department of Electrical Engineering and Information Technology (LGBE) Outline of the Talk • Introduction • SANYO HIT Solar cells • Experimental • substrates, deposition of layers, metallization •Experimental Results • analysis by SRP, I-V, spectral response, XPS, SIMS, spectroscopic ellipsometry, IR termography, SEM, Raman spectroscopy • Discussion • Heterojunction or MIS solar cells? • Summary SANYO HIT SOLAR CELLS Intrinsic a-Si:H layer p-type a-Si:H n-type a-Si:H n-type Cz Si ITO Deposition conditions of a-Si:H films Gas flow rate (sccm) a-Si:H SiH4 p-type n-type i-type B2H6 (1%) 5-20 2-40 5-40 5-40 B2H6 , PH3:H2 balanced PH3 (1%) 5-40 - H2 Substrate Pressure RF power temp. (°C) (Pa) (mW/cm2) 20-100 80-180 5-200 80-180 0-100 80-180 10-40 10-40 5-40 Toru Sawada et al. in: First WCPEC, 1994, Hawaii, p.1219-1226. 5-90 10-60 5-90 Metal PROCESS PARAMETERS • N,P-type a-Si:H (µc-Si) layers deposition: PECVD 13.56 / 110 MHz, • ITO deposition: Room temperature -230 °C, InSn, (InSn 90/10),ITOtargets single magnetron in DC mode, 100 W/cm2 power density • Front side metallization (e-gun): Cr (30 nm) / Ag (3 µm) • Back side metallization (e-gun): Al (2 µm) PROCESS SCHEME • Substrate cleaning: -rinzing in aceton (5 min,ultrasonic bath) -rinzing in methanol(5 min,ultrasonic bath) -oxide removal with HF (1min, 1%) or RCA cleaning • a-Si:H layer deposition • ITO deposition • Front grid deposition • Masking of cells • ITO etching (HF) • A-Si:H layer etching by SF6 plasma • Photoresist masking of front side • Oxide removal on back side • Al back contact evaporation • Cleaning E x te r n a l Q u a n t u m E f fi c i e n c y 1.0 0.8 0.6 5 nm 10 nm 0.4 15 nm 20 nm 0.2 30 nm 0.0 400 600 800 1000 Wavelenghth (nm) 1200 metal grid / ITO / (n)a-Si:H /(p)c-Si(multi-Si)/Al solar cell parameters (1× 1 cm2) __________________________________________________________________________________________ Si Isc Voc FF Eff Substrate (mA) (mV) (%) (%) _________________________________________ Fz 31.6 587 78.4 14.6 Cz 30.9 588 79.3 14.4 Baysix 27.4 603 77.5 12.8 _________________________________________ + Back surface field _________________________________________ Cz 26.8 574 79.0 12.1 _________________________________________ + (p)µc-Si (10nm) on the back side _________________________________________ Cz 29.9 612 79.8 14.6 _________________________________________ (n)a-Si:H+(i) a-Si:H(20nm) on the front side _________________________________________ Baysix 25.4 613 78.5 12.2 Resistivity (ohm.cm) 1x10 4 9x10 3 a-Si:H on Corning glass 8x10 3 7x10 3 6x10 3 0 50 100 150 200 Hydrogen flux (sccm) Resistivity of a-Si:H layers deposited on a Corning glass at 150 °C versus hydrogen flux during the deposition. 12.5 Efficiency before etching Efficiency after etching Efficiency (%) 12.0 11.5 11.0 10.5 10.0 9.5 0 50 100 200 Flux of hydrogen (sccm) Solar cells ITO(80nm) / (n)a-Si:H(5nm) / Cz Si efficiencies versus hydrogen flux during the deposition of a-Si:H layer (150 °C) before and after the etching of edges. Solar cell parameters (~5 nm a-Si:H emitter deposited at different temperatures) 39 cm2 Solar Cells, Cz Si Temperature of a-Si:H Jsc deposition, °C (mA/cm2) Uoc (mV) FF (%) η (%) 230 31.3 586 68.5 12.6 150 30.4 590 70.2 12.6 100 30.2 568 66.3 11.4 RAMAN MEASUREMENTS a-Si:H properties 140 120 Intensity (a.u.) 80 230 °C 150 °C 100 100 °C 60 40 20 0 -20 -40 1800 2000 2200 2400 2600 -1 Raman Shift (cm ) 2 800 -4 6.0x10 ITO specific resistivity versus deposition temperature (ITO target, Ar ambient) -4 -4 5.0x10 -4 4.5x10 -4 4.0x10 -4 3.5x10 -4 3.0x10 -4 2.5x10 0 50 100 150 200 Temperature 12.8 2 12.6 Efficiency, % Resistivity (Ohmcm) 5.5x10 Efficiency of 39 cm Solar cells versus ITO deposition temperature 12.4 12.2 12.0 11.8 11.6 150 200 250 300 Temperature, °C 350 ITO/a-Si:H interface XPS Intensity (a.u.) SiO 2 /a-Si:H/c-Si ITO/a-Si:H/c-Si 110 108 106 104 Si 2p 102 100 98 96 94 Binding Energy (eV) ITO(2nm)/n-type a-Si:H(5nm)/c-Si structure a-Si:H deposited at 230 °C Formation of Si-O bonds on the ITO/a-Si:H interface ITO/a-Si:H interface XPS 3200 Intensity (a.u.) 3000 2800 2600 ITO/a-Si:H/SiO 2 In 3d 5/2 ITO/a-Si:H/c-Si 2400 In 3d 3/2 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 460 455 450 445 440 Binding Energy (eV) ITO(2nm)/n-type a-Si:H(5nm)/c-Si(SiO2) structures a-Si:H deposited at 230 °C Formation of Si-In bonds on the ITO/a-Si:H interface Penetration of In in to the Si substrate ITO/a-Si:H interface XPS Intensity (a.u.) 600 ITO/a-Si:H/SiO 2 550 ITO/a-Si:H/c-Si Sn 3d 5/2 500 Sn 3d 3/2 450 400 350 300 250 200 500 495 490 485 480 Binding Energy (eV) ITO(2nm)/n-type a-Si:H(5nm)/c-Si(SiO2) structures a-Si:H deposited at 230 °C Formation of Si-Sn bonds on the ITO/a-Si:H interface Penetration of Sn in to the Si substrate Intensity ITO/a-Si:H interface SIMS 10 5 10 4 In 10 3 Sn 10 2 10 1 10 0 10 -1 H Si 0 5 10 15 20 M inutes ITO(80nm)/n-type a-Si:H(5nm)/c-Si structure a-Si:H deposited at 230 °C Penetration of In, Sn, H in to the Si substrate Look-in Thermography Identification Basic Material Category Area η : P543-9 : a-Si/c-Si hetero cell : single junction solar cell : 0,979 cm2 : 15,3 % (ISE Freiburg sertificated) Bias Voltage : 0,55 V Current : 4,55 mA Temperature Scale : 0 to 0,4 mK Look-in Thermography Identification Basic Material Category Area η : P797 : a-Si/c-Si hetero cell : single junction solar cell : 39 cm2 : 0,15 % Bias Voltage : 0,2 V Current : 922 mA Temperature Scale : 0 to 2 mK Look-in Thermography Identification Basic Material Category Area η : P846 : a-Si/c-Si hetero cell : single junction solar cell : 39 cm2 : 12,3 % Bias Voltage Current Temperature Scale : 0,55 V : 98,6 mA : 0 to 1 mK SURFACE STRUCTURING BY HYDROGEN PLASMA TREATMENT 80 Inte nsity (a.u .) 70 60 H 2 molecules in voids 50 40 30 20 10 0 3800 4000 4200 -1 Raman Shift (cm ) Raman spectra of H plasma (110 MHz, 50 W, 400 mTorr, 200 sccm H2) treated mc-Si at 250 °C for 5 min SURFACE STRUCTURING BY HYDROGEN PLASMA TREATMENT SURFACE 0.5° BEVELED SEM spectra of H plasma (110 MHz, 50 W,400 mTorr, 200 sccm H2) treated Si at 250 °C for 60 min SUMMARY - The surface preparation strongly influences the HJ solar cells properties. A process in which first the complete front side of the solar cells is processed is the optimum process for this kind of solar cells. - Producing first the BSF results in low fill factors due to insufficient front surface cleaning before the a-Si:H deposition on a substrate with Al on a backside. - A chemical etching procedure or passivation by silicon oxynitride of the edge area of HJ solar cells leads to an improvement in the efficiency up to ~30%. - Formation of Sn-Si, In-Si, Si-O bonds on the ITO/a-Si:H interface was observed by XPS measurements which shows that during the ITO deposition a penetration of Sn,In,O atoms into the Si substrate occurs. This conclusion was supported also by results from SIMS measurements and spectroscopic ellipsometry (for Si-O bonds formation). - An increase of the ITO deposition temperature leads to the increase of the conductivity of this material and in the same time to the decrease of the solar cell efficiencies ⇒a complicated HJ structure near the a-Si:H/c-Si interface region. - The ITO/a-Si:H/c-Si interface properties are more important then the properties of individual ITO or a-Si:H (µc-Si) layers for HJ solar cells. - Formation of SiOx interface layer must be taken into account for the model of HJ solar cells and for the optimization of the processing technology.
© Copyright 2026 Paperzz