02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 29 Home Quit Checkpoint 2: Assess Your Understanding, pages 136–138 2.3 1. Group the radicals into sets of like radicals. Simplify first if necessary. √ √ √ √ √ √ 50, 27, 48, 3 72, 98, 2 3 √ √ √ √ 50 ⴝ 25 # 2 27 ⴝ 9 # 3 √ √ ⴝ5 2 ⴝ3 3 √ √ √ √ 3 72 ⴝ 3 36 # 2 98 ⴝ 49 # 2 √ √ ⴝ 18 2 √ 48 ⴝ √ 16 # 3 √ ⴝ4 3 √ 2 3 ⴝ7 2 All radicals have index 2. √ √ √ √ √ √ √ √ √ 50 , 3 72, 98 √ √ √ Radicals with radicand 2: 5 2, 18 2, 7 2; that is, Radicals with radicand 3: 3 3, 4 3, 2 3; that is, 27 , 48 , 2 3 2. Multiple Choice Which list contains only like radicals? Assume all variables are non-negative. √ √ √ √ √ √ A. 25x, 25x2, 3 25x B. 3 x, 3 y, 3 a √ √ √ √ C. 3 x4, 5 x4, 3 5x4 √ √ D. 3 x5, 2x 3 x2, - 3 3 8x5 3. Identify the values of the variables for which each radical is defined, then simplify. √ √ √ a) 25x + 36x - 4x The radicands cannot be negative, so x » 0. √ √ √ 25x ⴙ 36x ⴚ 4x ⴝ 5 x ⴙ 6 x ⴚ 2 x √ √ √ √ ⴝ9 x b) √ √ √ √ 8a - 3 b + 5 2a + 4b » 0 and b » 0. √ √ √ √ 8a ⴚ 3 b ⴙ 5 2a ⴙ 4b ⴝ 2 2a ⴚ 3 b ⴙ 5 2a ⴙ 2 b √ √ The radicands cannot be negative, so a √ √ √ √ ⴝ 7 2a ⴚ ©P DO NOT COPY. b Chapter 2: Absolute Value and Radicals—Checkpoint 2—Solutions 29 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 30 Home c) Quit √ √ √ √ 75c4d + c2 12d + 48cd4 - 3d2 27c √ √ 12d » 0, so d » 0 and 27c » 0, so c » 0 √ 4 √ √ √ 75c d ⴙ c2 12d ⴙ 48cd4 ⴚ 3d2 27c √ √ √ √ ⴝ 25 # 3 # c4 # d ⴙ c2 4 # 3d ⴙ 16 # 3 # c # d4 ⴚ 3d2 9 # 3 # c √ √ √ √ ⴝ 5c2 3d ⴙ 2c2 3d ⴙ 4d2 3c ⴚ 9d2 3c √ √ 2 2 ⴝ 7c 3d ⴚ 5d 3c √ √ √ d) 3 8a + 3 16a4 - 3 -128a The cube root of a number is defined for all real numbers. So, each radical is defined for a ç ⺢. √ 3 8a ⴙ √3 16a4 ⴚ √ 3 √ √ √ 3 8 # a ⴙ 3 8 # 2 # a3 # a ⴚ 3 ⴚ64 # 2 # a √ √ √ ⴝ 2 3 a ⴙ 2a 3 2a ⴚ (ⴚ4) 3 2a √ √ √ 3 3 3 ⴚ128a ⴝ ⴝ 2 a ⴙ 2a 2a ⴙ 4 2a 2.4 4. Expand and simplify. √ √ a) 1 7 + 222 √ √ √ √ ⴝ ( 7 ⴙ 2)( 7 ⴙ 2) √ √ √ ⴝ 7( 7 ⴙ 2) √ √ √ ⴙ 2( 7 ⴙ 2) √ √ ⴝ 7 ⴙ 14 ⴙ 14 ⴙ 2 √ √ √ b) 1 7 - 222 √ √ √ √ ⴝ ( 7 ⴚ 2)( 7 ⴚ 2) √ √ √ √ √ √ ⴝ 7( 7 ⴚ 2) ⴚ 2( 7 ⴚ 2) √ √ ⴝ 7 ⴚ 14 ⴚ 14 ⴙ 2 √ √ √ √ √ c) 1 7 + 221 7 - 22 √ √ √ ⴝ 7( 7 ⴚ 2) √ √ √ ⴙ 2( 7 ⴚ 2) √ √ √ √ √ √ d) 12 7 + 3 221 7 - 2 22 √ √ √ √ √ √ ⴝ 2 7( 7 ⴚ 2 2) ⴙ 3 2( 7 ⴚ 2 2) √ √ ⴝ 14 ⴚ 4 14 ⴙ 3 14 ⴚ 12 √ ⴝ 9 ⴚ 2 14 ⴝ 9 ⴙ 2 14 ⴝ7ⴚ 14 ⴙ 14 ⴚ 2 ⴝ2ⴚ 14 ⴝ5 5. Multiple Choice Which expression represents √ √ √ √ √ √ 13 x - 2 y213 x + 2 y2 - 12 x - 3 y22, x ≥ 0, y ≥ 0, in simplest form? A. 5x + 5y + 12xy C. 5x - 13y + 12xy 30 √ B. 5x - 5y + 12 xy √ D. 5x - 13y + 12 xy Chapter 2: Absolute Value and Radicals—Checkpoint 2—Solutions DO NOT COPY. ©P 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 31 Home Quit 6. Rationalize the denominator. √ √ √ 8 3 + 1 3 24 - 4 2 √ a) √ b) 3 2 √ √ √ √ √ (6 6 ⴚ 4 2) # 2 (8 3 ⴙ 1) # 3 √ √ ⴝ √ √ ⴝ 3 √ ⴝ 3 # √3 ⴙ 1 # √3 √ √ 3# 3 8 3 24 ⴙ ⴝ 3 √ √ ⴝ 6 6 √ 2 2 # √2 ⴚ 4√2 # √2 √ √ 2# 2 6 12 ⴚ 8 ⴝ 2 3 √ 12 3 ⴚ 8 √2 2(6 3 ⴚ 4) ⴝ 2 ⴝ √ ⴝ6 3ⴚ4 7. Simplify. √ 3 2 a) √ 2 6 - 5 √ 3 2 √ # (2√6 ⴙ 5) √ (2 6 ⴚ 5) (2 6 ⴙ 5) √ √ 6 12 ⴙ 15 2 ⴝ √ 2 (2 6) ⴚ (5)2 √ √ ⴝ ⴝ 12 3 ⴙ 15 2 24 ⴚ 25 √ √ 12 3 ⴙ 15 2 ⴝ ⴚ1 √ √ ⴝ ⴚ12 3 ⴚ 15 2 √ √ 3 8 + 2 5 √ b) √ 2 + 20 √ √ 6 2ⴙ2 5 ⴝ √ √ 2ⴙ2 5 √ √ √ √ (6 2 ⴙ 2 5) # ( 2 ⴚ 2 5) √ √ √ ⴝ √ ( 2 ⴙ 2 5) ( 2 ⴚ 2 5) √ √ √ √ √ √ 6 2( 2 ⴚ 2 5) ⴙ 2 5( 2 ⴚ 2 5) √ √ ⴝ ( 2)2 ⴚ (2 5)2 √ √ ⴝ ⴝ 12 ⴚ 12 10 ⴙ 2 10 ⴚ 20 2 ⴚ 20 √ ⴚ 8 ⴚ 10 10 ⴚ18 √ 4 ⴙ 5 10 ⴝ 9 ©P DO NOT COPY. Chapter 2: Absolute Value and Radicals—Checkpoint 2—Solutions 31
© Copyright 2025 Paperzz