Name ________________________________________ Date __________________ Class__________________ LESSON 2-6 Reteach The Quadratic Formula The Quadratic Formula is another way to find the roots of a quadratic equation or the zeros of a quadratic function. Find the zeros of f (x) = x2 − 6x − 11. Step 1 Set f (x) = 0. Step 2 Write the Quadratic Formula. x = Step 3 Substitute values for a, b, and c into the Quadratic Formula. x2 − 6x − 11 = 0 −b ± b 2 − 4ac 2a a = 1, b = −6, c = −11 −b ± b 2 − 4ac − ( −6 ) ± x= = 2a Step 4 2 Simplify. x= Step 5 ( −6 ) − 4 (1)( −11) 2 (1) − ( −6 ) ± ( −6 ) − 4 (1)( −11) 2 (1) 2 = 6 ± 36 + 44 6 ± 80 = 2 2 Write in simplest form. x= 6 ± 80 80 =3± =3± 2 2 (16 )( 5 ) 2 =3± 4 5 =3±2 5 2 Remember to divide both terms of the numerator by 2 to simplify. Find the zeros of each function using the Quadratic Formula. 1. f (x) = x2 + x − 1 2. f (x) = x2 − 6x + 6 x2 + x − 1 = 0 ____________________ a = _____, b = _____, c = _____ a = _____, b = _____, c = _____ x= −b ± b 2 − 4ac 2a −b ± b 2 − 4ac 2a ( ____ ) − 4 ( ___ )( ____ ) 2 ( ___ ) _________________________________ _________________________________________ ________________________________________ _________________________________________ ________________________________________ x= − ( ____ ) ± x= 2 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 2-46 Holt McDougal Algebra 2 Name ________________________________________ Date __________________ Class__________________ LESSON 2-6 Reteach The Quadratic Formula (continued) The discriminant of ax2 + bx + c = 0 (a ≠ 0) is b2 − 4ac. Use the discriminant to determine the number of roots of a quadratic equation. A quadratic equation can have 2 real solutions, 1 real solution, or 2 complex solutions. Find the type and number of solutions. x2 + 10x = −25 2x2 − 5x = 3 3x2 − 4x = −2 Write the equation in standard form: Write the equation in standard form: Write the equation in standard form: 2x2 − 5x − 3 = 0 x2 + 10x + 25 = 0 3x2 − 4x + 2 = 0 a = 2, b = −5, c = −3 a = 1, b = 10, c = 25 a = 3, b = −4, c = 2 Evaluate the discriminant: Evaluate the discriminant: Evaluate the discriminant: 2 2 b − 4ac b − 4ac b2 − 4ac (−5)2 − 4(2)(−3) (10)2 − 4(1)(25) (−4)2 − 4(3)(2) 25 + 24 100 − 100 16 − 24 49 0 −8 When b2 − 4ac > 0, the equation has 2 real solutions. When b2 − 4ac = 0, the equation has 1 real solution. When b2 − 4ac < 0, the equation has 2 complex solutions. Find the type and number of solutions for each equation. 3. x2 − 12x = −36 4. x2 − 4x = −7 5. x2 − 7x = −3 x2 − 12x + 36 = 0 ____________________ ____________________ a = ____, b = ____, c = ____ ____________________ ____________________ b2 − 4ac = b2 − 4ac = b2 − 4ac = ________________________ _________________________ Classify solutions: Classify solutions: ________________________ _________________________ ________________________ Classify solutions: ________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 2-47 Holt McDougal Algebra 2 Reteach Challenge 1. a = 1, b = 1, c = −1 1. Equation Roots Sum of the Roots Product of the Roots x= −(1) ± (1)2 − 4(1)( −1) 2(1) x= −1 ± 1 + 4 2 a. x2 − 6x + 8=0 4, 2 6 8 x= −1 ± 5 2 b. x2 − 7x + 12 = 0 4, 3 7 12 c. x2 + 2x − 35 = 0 5, −7 2. x2 − 6x + 6 = 0 a = 1, b = −6, c = 6 −( −6) ± ( −6)2 − 4(1)(6) x= 2(1) d. 4x2 − 8x + 3=0 1 3 , 2 2 6 ± 36 − 24 x= 2 e. 9x2 + 3x − 2=0 1 2 ,− 3 3 x =3± 3 2. a. r1 + r2 = − 3. a = 1, b = −12, c = 36 b. r1r2 = 0 1 real solution 4. x2 − 4x + 7 = 0 −2 −35 3 4 2 − 1 3 − 2 9 b a c a 3. x2 − 4x − 1 = 0 4. k = −3 5. C 6. A Problem Solving a = 1, b = −4, c = 7 1. a. t = −0.25, 1.5 −12 b. 30 ft 2 complex solutions 2. a. t = −0.23, 1.61; 35.4 ft 5. x2 − 7x + 3 = 0 b. t = −0.21, 1.77; 44.3 ft a = 1, b = −7, c = 3 c. t = −0.19, 1.94; 54.3 ft 37 3. C 2 real solutions 4. C Reading Strategies 1. a = 2, b = −6, c = −9 2. (−6)2 − 4(2)(−9) = 108 3. Since the discriminant is positive, the equation has two real roots. 4. Yes; since the equation has two real roots, the related function has two zeros. 5. x = −( −6) ± 108 3 ± 3 3 = 2(2) 2 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A18 Holt McDougal Algebra 2
© Copyright 2026 Paperzz