Station 1 β Recognizing patterns in multiplying binomials and factoring trinomials We have learned two special patterns for multiplying binomials. FOIL is not one of these patterns. 1. What are the two special patterns for multiplying binomials? Name them and give examples of each These special patterns help us with their counterpart factoring patterns. 2. Name the two factoring patterns that partner with the multiplying patterns and give examples of each. Station 1 key 1. Squaring a binomial Sum and Difference (ππ β π)π = πππ β πππ + ππ (ππ + π)(ππ β π) = ππππ β ππ 2. Perfect square trinomial Difference of two squares ππππ β πππ + π = (ππ β π)π ππππ β πππ = (ππ β ππ)(ππ + ππ) Station 2 β Simplifying and naming polynomials Simplify and write in standard form, then name each based on degree and number of terms. 1. (ππππ + ππ) β π(ππ + πππ ) + (π + π)(π β π) 2. (ππππ + πππ) β (πππ β πππ ) + π(π + π) 3. βπππ (π + ππ) β (ππ + π)(ππ β π) 4. πππ + πππ π β πππ + πππ π β (ππ + ππ π ) Station 2 key 1. ππππ + ππ β ππ β πππ + ππ β ππ + ππ β π = πππ β ππ β π ; 2nd degree trinomial 2. ππππ + πππ β πππ + πππ + ππ + ππ = βπππ + ππππ + ππ + πππ ; 4th degree polynomial 3. βπππ β ππππ β (πππ β πππ + ππ β ππ) = βπππ β ππππ + π + ππ ; 3rd degree poly. 4. πππ + πππ π β πππ + πππ π β (ππ + ππ π ) = πππ π β ππ ; 2nd degree binomial Station 3 β GCF Factoring Factor the following using the GCF. Use standard form. 1. ππππ + πππ β πππ 2. ππππ ππ + ππππ ππ + πππ ππ 3. βππππ + ππππ β ππππ 4. ππππ β πππππ + ππππ ππ Station 3 key 1. πππ (βπππ + ππ + π) = βπππ (πππ β ππ β π) 2. πππ ππ (ππ + πππ π + ππ) 3. βπππ (βπππ + ππ + π) = πππ (πππ β ππ β π) 4. πππ (π β ππππ + πππ ππ ) = πππ (πππ ππ β ππππ + π) Station 4 - Multiplying polynomials Find the product: 1. (ππ + ππ)(βππ β ππ) 4. (ππ + π)(ππ β π) 2. (πππ β π)(ππ + π) 5. (πππ β π)π 3. (ππ β π)(πππ β ππ + ππ) 6. (ππ β π)(ππ β π) Station 4 key 1. βππππ β ππππ β πππ 4. ππππ β π 2. ππππ + πππ β πππ β ππ 5. πππππ β πππ + ππ 3. ππππ β ππππ + πππ β ππ 6. ππππ β πππ β ππ Station 5 β Applications of perimeter and area For the rectangle below, write the simplified expressions that represent the perimeter and area of the rectangle. 4π₯ β 1 2π₯ + 3 Station 5 key Perimeter: π(ππ + π) + π(ππ β π) = ππ + π + ππ β π = πππ + π Area: (ππ + π)(ππ β π) = πππ β ππ + πππ β π = πππ + πππ β π Station 6 β Factoring Factor the following trinomials: 1. ππ β πππ + ππ 5. ππππ β ππ β ππ 2. ππ + πππ + ππ 6. πππ β πππ + ππ 3. ππ + πππ + ππ 7. πππ β ππ β π 4. ππ β πππ β ππ 8. πππ β ππ + π Station 6 key 1. (π β ππ)(π β π) 5. (ππ β π)(ππ + π) 2. (π + ππ)(π + π) 6. (ππ β ππ)(π β π) 3. (π + ππ)(π + π) 7. (ππ + π)(π β π) 4. (π β ππ)(π + π) 8. (ππ β π)(π β π) Station 7 - Dividing Polynomials Using long division, divide 2x3 β 9x2 + 15 by 2x β 5. Show all work and express any remainder as a fraction. Station 7 key Remember that since there is no βx termβ you must fill in with Ox so the answer is Station 8 β Finding area using polynomial rules Write a simplified expression to represent the shaded area below: ππ + π ππ β π ππ + π Station 8 key Area of rectangle (ππ + π)(ππ β π) = ππππ β ππ + πππ β ππ = ππππ + πππ β ππ Area of triangle (ππ β π)(ππ + π) πππ β ππ + ππ β π πππ β π = = = πππ β π π π π Now subtract and simplify (ππππ + πππ β ππ) β (πππ β π) = πππ + πππ β π
© Copyright 2026 Paperzz