Transportation Research Part E 45 (2009) 572–582 Contents lists available at ScienceDirect Transportation Research Part E journal homepage: www.elsevier.com/locate/tre A technical note on ‘‘Optimizing inventory decisions in a multi-stage multi-customer supply chain” Kit Nam Francis Leung * Department of Management Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong a r t i c l e i n f o Article history: Received 9 September 2008 Received in revised form 4 January 2009 Accepted 24 January 2009 Keywords: Inventory Production Without derivatives The perfect squares method a b s t r a c t We first generalize Khouja [Khouja, M., 2003. Optimizing inventory decisions in a multistage multi-customer supply chain. Transportation Research Part E: Logistics and Transportation Review 39 (3), 193–208] integrated model considering the integer multipliers mechanism and next individually derive the optimal solution to the three- and four-stage model using the perfect squares method, which is a simple algebraic approach so that ordinary readers unfamiliar with differential calculus can understand the optimal solution procedure with ease. We subsequently deduce the optimal expressions for Khouja (2003) and Cárdenas-Barrón [Cárdenas-Barrón, L.E., 2007. Optimal inventory decisions in a multistage multi-customer supply chain: a note. Transportation Research Part E: Logistics and Transportation Review 43 (5), 647–654] model, and identify the associated errors in Khouja (2003). We present two numerical examples for illustrative purposes. We finally shed light on some future research by extending or modifying the generalized model. Ó 2009 Elsevier Ltd. All rights reserved. 1. Introduction Increasing attention has been given to the management of a multi-stage multi-firm (or multi-customer) supply chain in recent years. This is due to increasing competitiveness, short life cycles of modern electronic products and the quick global changes in today’s businesses. The integration of the supply chain provides a key to successful international business operations. This is because the integrated approach improves the global system performance and cost effectiveness. Besides integrating all members in a supply chain, to improve the traditional method of solving inventory problems is also necessary. Without using derivatives, Grubbström (1995) first derived the optimal expressions for the classical economic order quantity (EOQ) model using the unity decomposition method, which is an algebraic approach. Adopting this method, Grubbström and Erdem (1999) and Cárdenas-Barrón (2001), respectively, derived the optimal expressions for an EOQ and economic production quantity (EPQ) model with complete backorders. In this note, a generalized model for a three- or four-stage multi-firm production-inventory integrated system is solved using the revised version of the perfect squares method, which is also an algebraic approach; whereby optimal expressions of decision variables and the objective function are derived. In addition to the papers with regard to solving some inventory models without derivatives surveyed by and classified in Table 1 of Cárdenas-Barrón (2007), we review some recently relevant papers as follows: using the unity decomposition method, Chiu et al. (2006) derived the optimal expressions for an EPQ model with complete backorders, a random proportion of defectives, and an immediate imperfect rework process while Cárdenas-Barrón (2008) derived those for an EPQ model with no shortages, a fixed proportion of defectives, and an immediate or a N-cycle perfect rework process. Using the complete squares method and perfect squares method proposed by Chang et al. (2005), Wee and Chung (2007) and Chung and * Tel.: +852 27888589; fax: +852 27888560. E-mail address: [email protected] 1366-5545/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tre.2009.01.007 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 573 Wee (2007), respectively, derived the optimal expressions for a two- and three-stage single-firm supply chain inventory model with complete backorders, and lot streaming (which means that any shipments can be made from a production batch before the whole batch is finished). Leung (2008a) proposed revised versions of the complete and perfect squares methods to derive the optimal expressions for an EOQ model with partial backorders and Leung (2008b) also adopted them to derive those for an EOQ model when the quantity backordered and the quantity received are both uncertain. Teng (2008) proposed the arithmetic–geometric-mean-inequality method to derive the optimal expressions for the classical EOQ model. Wee et al. (2009) proposed a modified version of the cost-difference comparisons method originated from Minner (2007) to individually derive the optimal expressions for an EOQ and EPQ model with complete backorders. 2. Assumptions and notation Our multi-stage multi-firm supply chain inventory-production model is based on the assumptions stated by Khouja (2003), with the following five main exceptions: (1) (2) (3) (4) (5) The setup or ordering costs are different for all firms in the chain. The holding costs of raw materials are different from those of finished products. The holding costs of raw materials are different for all firms in the chain. The holding costs of finished goods are different for all firms in the chain. There are three or more stages. We thus generalize Khouja’s (2003) model by incorporating these five realistic conditions. The following notation (almost all as defined in Khouja, 2003) is used in the expression of the joint total relevant cost per year. Dij = demand rate of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; nÞ [units per year] Pij = production rate of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; n 1Þ [units per year] Sij = setup or ordering cost of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; nÞ [$ per cycle] ðrmÞ g ij hi1;j = holding cost of incoming raw material of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; n 1Þ [$ per unit per year] hij = holding cost of finished goods of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; nÞ [$ per unit per year] T nj ¼ T = basic cycle time of firm jð¼ 1; . . . ; J n Þ in stage n (T is a decision variable with non-negative real values) [a fraction of a year] Q T ij ¼ T n1 k¼i K k = integer–multiplier cycle time of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; n 1Þ (K 1 ; . . . ; K n1 are decision variables, each with positive integral values) [a fraction of a year] TC ij = total relevant cost of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; nÞ [$ per year] P PJi TC ij = joint total relevant cost as a function of K 1 ; . . . ; K n1 and T (the objective function) [$ JTCðK 1 ; . . . ; K n1 ; TÞ ¼ ni¼1 j¼1 per year] To simplify the presentation of the subsequent mathematical expressions, we designate Dij Pij Ji X uij ¼ SiJ ¼ for i ¼ 1; . . . ; n 1; j ¼ 1; . . . ; J i ; Sij ð1Þ for i ¼ 1; . . . ; n; ð2Þ D1j ½u1j ðg 1j þ h1j Þ þ h1j ; ð3Þ j¼1 H1 ¼ J1 X j¼1 Hi ¼ Ji X Dij ½uij ðg ij þ hij Þ þ hij J i1 X j¼1 Di1;j hi1;j for i ¼ 2; . . . ; n 1; ð4Þ j¼1 and Hn ¼ Jn X Dnj hnj j¼1 J n1 X Dn1;j hn1;j : ð5Þ j¼1 The total relevant cost per year of firm jð¼ 1; . . . ; J i Þ in stage ið¼ 1; . . . ; n 1Þ is given by Qn1 TC ij ¼ k¼i K k TD2ij ð ðg ij þ hij Þ þ 2Pij Qn1 k¼i Kk Qn1 k¼iþ1 K k ÞTDij 2 Sij ; hij þ Qn1 k¼i K k T ð6Þ where term 1 represents the sum of the holding cost of raw material as it is being converted into finished goods and that of finished goods during the production portion of a cycle, term 2 represents the holding cost of finished goods during the nonproduction portion of a cycle, and term 3 represents the setup cost. 574 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 To simplify the notation and facilitate the computation, we are better off adopting designation (1) to Eq. (6) rather than Q employing the symbols P ¼ i;j P ij and Pij ¼ P Pij (not P Pij Þ as in Khouja (2003) or Cárdenas-Barrón (2007). Hence, Eq. (6) after some manipulations becomes TC ij ¼ Q Qn1 TDij ½uij ðg ij þ hij Þ þ hij n1 TDij hij k¼iþ1 K k Sij k¼i K k þ Qn1 2 2 T k¼i K k for i ¼ 1; . . . ; n 1; j ¼ 1; . . . ; J i ; and n1 Y K k 1: ð7Þ k¼n The total relevant cost per year of firm jð¼ 1; . . . ; J n Þ in stage n is given by TC nj ¼ TDnj hnj Snj þ 2 T for j ¼ 1; . . . ; J n ; ð8Þ where term 1 represents the holding cost of finished goods and term 2 represents the ordering cost. 3. An algebraic solution to an integrated model of a three-stage multi-firm supply chain with an integer multiplier at each stage without lot streaming (which means that any shipments cannot be made from a production batch until the whole batch is finished) The joint total relevant cost per year for the supply chain integrating multiple suppliers ði ¼ 1; j ¼ 1; . . . ; J 1 Þ, multiple manufacturers ði ¼ 2; j ¼ 1; . . . ; J 2 Þ and multiple retailers ði ¼ 3; j ¼ 1; . . . ; J 3 Þ is given by JTCðK 1 ; K 2 ; TÞ ¼ J1 X j¼1 TC 1j þ J2 X j¼1 TC 2j þ J3 X TC 3j : ð9Þ j¼1 Substituting Eqs. (7) and (8) with n ¼ 3 into Eq. (9) and using designations (2)–(5) with n ¼ 3 yield JTCðK 1 ; K 2 ; TÞ ¼ J1 J1 h i TK X TK 1 K 2 X S1J 2 Dij u1j ðg 1j þ h1j Þ þ h1j D1j h1j þ 2 2 TK 1K2 j¼1 j¼1 J2 J2 J3 h i T X TK 2 X S2J T X S3J 1 S1J S2J D2j u2j ðg 2j þ h2j Þ þ h2j D2j h2j þ þ D3j h3j þ þ þ S3J ¼ 2 j¼1 T K1K2 K2 2 j¼1 TK 2 2 j¼1 T ( ( J ) J J h i h i 1 2 1 X X X T þ D1j u1j ðg 1j þ h1j Þ þ h1j þ K 2 D2j u2j ðg 2j þ h2j Þ þ h2j D1j h1j K1K2 2 j¼1 j¼1 j¼1 !) J3 J2 X X 1 S1J S2J H1 K 1 K 2 þ H 2 K 2 þ H3 ¼ þ D3j h3j D2j h2j þ þ S3J þ T : ð10Þ T K1K2 K2 2 j¼1 j¼1 þ Using the perfect squares method advocated in Leung (2008a) on p. 279, we have "sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #2 ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 S1J S2J H1 K 1 K 2 þ H2 K 2 þ H 3 JTCðK 1 ; K 2 ; TÞ ¼ þ þ S3J T T K1K2 K2 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J S2J þ 2 þ þ S3J ðH1 K 1 K 2 þ H2 K 2 þ H3 Þ: K1K2 K2 ð11Þ For two fixed positive integral values of the decision variables K 1 and K 2 , Eq. (11) has a unique minimum value when the quadratic non-negative term, depending on T, is made equal to zero. Therefore, the optimal value of the decision variable and the resulting minimum cost are denoted and determined by sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi S1J S2J 1 T ðK 1 ; K 2 Þ ¼ 2 þ þ S3J ; H1 K 1 K 2 þ H2 K 2 þ H3 K1K2 K2 and JTC ðK 1 ; K 2 Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J S2J 2 þ þ S3J ðH1 K 1 K 2 þ H2 K 2 þ H3 Þ: K1K2 K2 Multiplying out the two factors inside the square root in Eq. (13) yields pffiffiffi JTC ðK 1 ; K 2 Þ ¼ 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J H2 S2J H3 S1J H3 þ S2J H1 K 1 þ þ S3J H2 K 2 þ þ S3J H1 K 1 K 2 þ S1J H1 þ S2J H2 þ S3J H3 : K1 K2 K1K2 ð12Þ ð13Þ 575 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 Clearly, to minimize JTC ðK 1 ; K 2 Þ is equivalent to minimize fðK 1 ; K 2 Þ ¼ S1J H2 S2J H3 S1J H3 þ S2J H1 K 1 þ þ S3J H2 K 2 þ þ S3J H1 K 1 K 2 : K1 K2 K1K2 ð14Þ The two ð¼ 2 1Þ options to determine the optimal integral values of K 1 and K 2 according to Eq. (14) are shown below. Option (1): Eq. (14) can be written as H3 S1J H2 f ðK 1 ; K 2 Þ ¼ þ S2J H1 K 1 þ K1 ð1Þ S1J K1 þ S2J K2 þ S3J ðH1 K 1 þ H2 ÞK 2 : To minimize fð1Þ ðK 1 ; K 2 Þ is equivalent to separately minimize ð1Þ /2 ðK 1 ; K 2 Þ H3 S1J K1 þ S2J K2 þ S3J ðH1 K 1 þ H2 ÞK 2 ; ð15Þ and ð1Þ /1 ðK 1 Þ S1J H2 þ S2J H1 K 1 : K1 ð16Þ Hence, the joint total relevant cost per year can be minimized by first choosing K 1 ¼ that ð1Þ ð1Þ ð1Þ ð1Þ K1 and next K 2 ¼ ð1Þ K2 ð1Þ K 2 ðK 1 Þ ð1Þ /1 ðK 1 Þ < /1 ðK 1 1Þ and /1 ðK 1 Þ 6 /1 ðK 1 þ 1Þ; such ð17Þ and ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ /2 ðK 1 ; K 2 Þ < /2 ðK 1 ; K 2 1Þ and /2 ðK 1 ; K 2 Þ 6 /2 ðK 1 ; K 2 þ 1Þ: ð18Þ Two closed-form expressions, derived in Appendix A, for determining the optimal integral values of K 1 and K 2 are denoted and given by ð1Þ K1 and ð1Þ K2 ¼ $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % S1J H2 þ 0:25 þ 0:5 ; S2J H1 ð19Þ ffi 7 6vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 7 6u 7 6u H S1J þ S 2J 7 6u 3 K ð1Þ 7 6t 1 þ 0:25 þ 0:57; ¼6 5 4 S3J ðH1 K ð1Þ þ H2 Þ 1 ð20Þ where bxc is the largest integer 6 x. Option (2): Eq. (14) can also be written as S1J H2 þ HK 23 S2J H3 f ðK 1 ; K 2 Þ ¼ þ S3J H2 K 2 þ þ H1 ðS2J þ S3J K 2 ÞK 1 : K1 K2 ð2Þ To minimize fð2Þ ðK 1 ; K 2 Þ is equivalent to separately minimize ð2Þ /2 ðK 1 ; K 2 Þ S1J H2 þ HK 23 K1 þ H1 ðS2J þ S3J K 2 ÞK 1 ; and ð2Þ /1 ðK 2 Þ S2J H3 þ S3J H2 K 2 : K2 ð2Þ Similarly, the joint total relevant cost per year can be minimized by first choosing K 2 ¼ K 2 determined by ð2Þ K2 and ð2Þ K1 ¼ $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % S2J H3 þ 0:25 þ 0:5 ; S3J H2 ffi 7 6vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 7 6u 7 6u S H þ H3 2 ð2Þ 7 6u 1J K2 7 6t ¼6 þ 0:25 þ 0:5 7: ð2Þ 5 4 H1 ðS2J þ S3J K Þ 2 ð2Þ and next K 1 ¼ K 1 ð2Þ K 1 ðK 2 Þ ð21Þ ð22Þ 576 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 4. Deduction of two special models of a three-stage multi-firm supply chain without lot streaming 4.1. Khouja’s (2003) model based on integer–multiplier coordination mechanism Suppose that for all j; S1j ¼ S1 ; S2j ¼ S2 ; S3j ¼ S3 ; g 1j ¼ h0 ; g 2j ¼ h1j ¼ h1 ; h2j ¼ h2 and h3j ¼ h3 . Then designations (2)–(5) become S1J ¼ J 1 S1 ; S2J ¼ J 2 S2 ; H1 ¼ ðh0 þ h1 Þ J1 X S3J ¼ J 3 S3 ; ð23Þ D1j u1j þ Dh1 ; ð24Þ D2j u2j þ Dðh2 h1 Þ; ð25Þ j¼1 H2 ¼ ðh1 þ h2 Þ J2 X j¼1 and H3 ¼ Dðh3 h2 Þ; ð26Þ where the total demand at each stage is given by D¼ J1 X D1j ¼ j¼1 J2 X D2j ¼ j¼1 J3 X D3j : ð27Þ j¼1 Substituting designations (23)–(27) into Eqs. (19) and (20) [or (21) and (22)], (12) and (13), we have the optimal solution ðK 1 ; K 2 ; T ; JTC Þ to Khouja’s (2003) model with an integer multiplier at each stage. Notice that the optimal expressions of ðK 1 ; K 2 ; T Þ given by Eqs. (8)–(10) of Khouja (2003) are wrong. 4.2. Khouja’s (2003) model based on equal-cycle-time coordination mechanism Substituting designations (24)–(27) into Eqs. (12) and (13) with K 1 ¼ K 2 ¼ 1, we have T ð1; 1Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ðS1J þ S2J þ S3J Þ ; PJ1 PJ 2 D1j u1j þ ðh1 þ h2 Þ j¼1 D2j u2j þ Dh3 ðh0 þ h1 Þ j¼1 ð28Þ and vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " #ffi u J1 J2 X X u JTC ð1; 1Þ ¼ t2 S1J þ S2J þ S3J ðh0 þ h1 Þ D1j u1j þ ðh1 þ h2 Þ D2j u2j þ Dh3 ; j¼1 ð29Þ j¼1 which are Eqs. (7) and (8) with n ¼ 3 of Cárdenas-Barrón (2007). 5. An algebraic solution to an integrated model of a four-stage multi-firm supply chain with an integer multiplier at each stage without lot streaming The joint total relevant cost per year for the supply chain integrating multiple suppliers ði ¼ 1; j ¼ 1; . . . ; J 1 Þ, multiple manufacturers ði ¼ 2; j ¼ 1; . . . ; J 2 Þ, multiple assemblers ði ¼ 3; j ¼ 1; . . . ; J 3 Þ and multiple retailers ði ¼ 4; j ¼ 1; . . . ; J 4 Þ is given by JTCðK 1 ; K 2 ; K 3 ; TÞ ¼ J1 X j¼1 TC 1j þ J2 X TC 2j þ j¼1 J3 X j¼1 TC 3j þ J4 X TC 4j : ð30Þ j¼1 Substituting Eqs. (7) and (8) with n ¼ 4 into Eq. (30), using designations (2)–(5) with n ¼ 4 and manipulating yield TCðK 1 ; K 2 ; K 3 ; TÞ ¼ 1 S1J S2J S3J H 1 K 1 K 2 K 3 þ H2 K 2 K 3 þ H 3 K 3 þ H4 : þ þ þ S4J þ T T K1K2K3 K2K3 K3 2 ð31Þ Using the perfect squares method obtains "sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi#2 ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 S1J S2J S3J H 1 K 1 K 2 K 3 þ H2 K 2 K 3 þ H3 K 3 þ H4 TCðK 1 ; K 2 ; K 3 ; TÞ ¼ þ þ þ S4J T T K1K2K3 K2K3 K3 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J S2J S3J þ 2 þ þ þ S4J ðH1 K 1 K 2 K 3 þ H2 K 2 K 3 þ H3 K 3 þ H4 Þ: K1K2K3 K2K3 K3 ð32Þ 577 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 For three fixed positive integral values of K 1 ; K 2 and K 3 , the optimal value of the decision variable T and the resulting minimum cost are denoted and determined by sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J S2J S3J 1 T ðK 1 ; K 2 ; K 3 Þ ¼ 2 þ þ þ S4J ; H 1 K 1 K 2 K 3 þ H2 K 2 K 3 þ H 3 K 3 þ H4 K1K2K3 K2K3 K3 ð33Þ and JTC ðK 1 ; K 2 ; K 3 Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J S2J S3J 2 þ þ þ S4J ðH1 K 1 K 2 K 3 þ H2 K 2 K 3 þ H3 K 3 þ H4 Þ: K1K2K3 K2K3 K3 ð34Þ Multiplying out the two factors inside the square root in Eq. (34) yields JTC ðK 1 ; K 2 ; K 3 Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi S1J H2 S2J H3 S3J H4 S1J H3 S2J H4 S1J H4 þ S2J H1 K 1 þ þ S3J H2 K 2 þ þ S4J H3 K 3 þ þ S3J H1 K 1 K 2 þ þ S4J H2 K 2 K 3 þ þ S4J H1 K 1 K 2 K 3 þ S1J H1 þ S2J H2 þ S3J H3 þ S4J H4 : ¼ 2 K1 K2 K3 K1K2 K2K3 K1K2K3 Clearly, to minimize JTC ðK 1 K 2 K 3 Þ is equivalent to minimize fðK 1 ; K 2 ; K 3 Þ ¼ S1J H2 S2J H3 S3J H4 S1J H3 S2J H4 þ S2J H1 K 1 þ þ S3J H2 K 2 þ þ S4J H3 K 3 þ þ S3J H1 K 1 K 2 þ þ S4J H2 K 2 K 3 K1 K2 K3 K1K2 K2K3 S1J H4 þ þ S4J H1 K 1 K 2 K 3 : K1K2K3 ð35Þ There are six ð¼ 3 2 1Þ options to determine the optimal integral values of K 1 ; K 2 and K 3 ; however, we show below that only five options are distinct according to Eq. (35). Option (1): H3 S1J H2 f ðK 1 ; K 2 ; K 3 Þ ¼ þ S2J H1 K 1 þ K1 ð1Þ S1J K1 þ S2J þ S3J ðH1 K 1 þ H2 ÞK 2 þ K2 H4 S1J K1 K2 S þ K2J2 þ S3J þ S4J ðH1 K 1 K 2 þ H2 K 2 þ H3 ÞK 3 : K3 Following the derivation of Eq. (19), we have ð1Þ K1 ð1Þ K3 $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % S1J H2 ¼ þ 0:25 þ 0:5 ; S2J H1 ð1Þ K2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u S1J 7 6u H3 ð1Þ þ S2J 7 6u K 6u þ 0:25 þ 0:57 ¼ 6t 1 7; ð1Þ 5 4 S H K þH 3J 1 2 1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u S1J S2J 7 6u H4 ð1Þ ð1Þ þ ð1Þ þ S3J 7 6u K1 K2 K2 7 6u t ¼6 þ 0:25 þ 0:57: 5 4 S H K ð1Þ K ð1Þ þ H K ð1Þ þ H 4J 1 1 2 2 2 ð36Þ 3 Option (2): S1J H2 S3J H4 fð2Þ ðK 1 ; K 2 ; K 3 Þ ¼ þ S2J H1 K 1 þ þ S4J H3 K 3 þ K1 K3 S1J K1 þ S2J H3 þ HK 34 K2 þ ðS3J þ S4J K 3 ÞðH1 K 1 þ H2 ÞK 2 ; and ð2Þ K1 ð1Þ ð2Þ ¼ K1 ; K3 $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % S3J H4 ¼ þ 0:25 þ 0:5 ; S4J H3 ð2Þ K2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 7 6v 7 6u S1J H4 7 6u H3 þ ð2Þ ð2Þ þ S2J 7 6u K1 K3 6u þ 0:25 þ 0:57 ¼ 6t 7: ð2Þ ð2Þ 5 4 þH H K S þS K 3J 4J 1 3 ð37Þ 2 1 Option (3): fð3Þ ðK 1 ; K 2 ; K 3 Þ ¼ S2J H3 þ S3J H2 K 2 þ K2 S1J H2 þ HK 23 K1 þ H1 ðS2J þ S3J K 2 ÞK 1 þ H4 S1J K1K2 S þ K2J2 þ S3J K3 þ S4J ðH1 K 1 K 2 þ H2 K 2 þ H3 ÞK 3 ; 578 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 and ð3Þ K2 ð3Þ K3 $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % S2J H3 ¼ þ 0:25 þ 0:5 ; S3J H2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u H3 7 6u S H þ 1J 2 ð3Þ 7 6u K 6u 2 þ 0:25 þ 0:57 ¼ 6t 7; 5 4 H S þ S K ð3Þ ð3Þ K1 1 2J 3J 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u S1J S2J 7 6u H þ þ S u 4 3J ð3Þ ð3Þ ð3Þ 7 6u K K K 6t 1 2 2 þ 0:25 þ 0:57 ¼6 7: 5 4 S H K ð3Þ K ð3Þ þ H K ð3Þ þ H 4J 1 1 2 2 ð38Þ 3 2 Option (4): H4 S2J H3 f ðK 1 ; K 2 ; K 3 Þ ¼ þ S3J H2 K 2 þ K2 ð4Þ S2J K2 þ S3J K3 þ S4J ðH2 K 2 þ H3 ÞK 3 þ S1J H2 þ HK 23 þ KH2 K4 3 K1 þ H1 ðS2J þ S3J K 2 þ S4J K 2 K 3 ÞK 1 ; and ð4Þ K2 ð3Þ ð4Þ ¼ K2 ; K3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u S2J 7 6u H þ S u 3J 7 6u 4 K ð4Þ 6t 2 þ 0:25 þ 0:57 ¼6 7; 5 4 S H K ð4Þ þ H 4J ð4Þ K1 2 3 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u 7 6u 3 S1J H2 þ Hð4Þ þ ð4ÞH4 ð4Þ 7 6u K K K u 6t 2 2 3 þ 0:25 þ 0:57 ¼6 7: 5 4 H S þ S K ð4Þ þ S K ð4Þ K ð4Þ 1 2J 3J 2 4J 2 ð39Þ 3 Option (5): S3J H4 S1J H2 f ðK 1 ; K 2 ; K 3 Þ ¼ þ S4J H3 K 3 þ þ S2J H1 K 1 þ K3 K1 ð5Þ S1J K1 þ S2J H3 þ HK 34 K2 þ ðS3J þ S4J K 3 ÞðH1 K 1 þ H2 ÞK 2 ; and ð5Þ K3 ð2Þ ð5Þ ¼ K3 ; K1 ð2Þ ¼ K1 ð1Þ ¼ K1 ; ð5Þ K2 ð2Þ ¼ K2 ; which is the same as Eq. (37). In other words, Option (5) is the same as Option (2). Option (6): S2J H3 þ HK 34 S1J H2 þ HK 23 þ KH2 K4 3 S3J H4 f ðK 1 ; K 2 ; K 3 Þ ¼ þ S4J H3 K 3 þ þ H2 ðS3J þ S4J K 3 ÞK 2 þ þ H1 ðS2J þ S3J K 2 þ S4J K 2 K 3 ÞK 1 ; K3 K2 K1 ð6Þ and ð6Þ K3 ð6Þ K1 ð5Þ ¼ K3 ð2Þ ¼ K3 ; ð6Þ K2 ffi 7 6vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 7 6u 7 6u S H þ H4 3 ð6Þ 7 6u 2J K t 7 6 3 ¼6 þ 0:25 þ 0:57; ð6Þ 5 4 H2 ðS3J þ S4J K Þ 3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 7 6v 7 6u H3 H4 7 6u S1J H2 þ ð6Þ þ ð6Þ ð6Þ 7 6u K2 K2 K3 6u þ 0:25 þ 0:57 ¼ 6t 7: 5 4 H S þ S K ð6Þ þ S K ð6Þ K ð6Þ 1 2J 3J 2 4J 2 ð40Þ 3 PJ 3 In particular, substituting designations (24) and (25), H3 ¼ ðh2 þ h3 Þ j¼1 D3j u3j þ Dðh3 h2 Þ; H4 ¼ Dðh4 h3 Þ and PJ2 PJ 3 PJ 4 PJ1 D ¼ j¼1 D1j ¼ j¼1 D2j ¼ j¼1 D3j ¼ j¼1 D4j into Eqs. (33) and (34) with K 1 ¼ K 2 ¼ K 3 ¼ 1, we have T ð1; 1; 1Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ðS1J þ S2J þ S3J þ S4J Þ ; PJ1 PJ 2 PJ3 D1j u1j þ ðh1 þ h2 Þ j¼1 D2j u2j þ ðh2 þ h3 Þ j¼1 D3j u3j þ Dh4 ðh0 þ h1 Þ j¼1 ð41Þ 579 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 and vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " #ffi u J1 J2 J3 X X X u JTC ð1; 1; 1Þ ¼ t2ðS1J þ S2J þ S3J Þ ðh0 þ h1 Þ D1j u1j þ ðh1 þ h2 Þ D2j u2j þ ðh2 þ h3 Þ D3j u3j þ Dh4 ; j¼1 j¼1 j¼1 which are Eqs. (7) and (8) with n ¼ 4 of Cárdenas-Barrón (2007). 6. Numerical examples Example 1. A three-stage multi-firm supply chain Suppose that an item has the same characteristics as those on p. 203 of Khouja (2003) as follows: Holding costs: h0 ¼ 0:08; h1 ¼ 0:8; h2 ¼ 2; h3 ¼ 5 ($ per unit per year) One supplier ði ¼ 1; j ¼ 1Þ: D11 ¼ 133; 000 units per year; P11 ¼ 399; 000 units per year; S1 ¼ $800 per setup: Three manufacturers ði ¼ 2; j ¼ 1; 2; 3Þ D21 ¼ 70; 000; P 21 ¼ 140; 000 ðunits per yearÞ; D22 ¼ 36; 000; P22 ¼ 108; 000 ðunits per yearÞ; D23 ¼ 27; 000; P23 ¼ 108; 000 ðunits per yearÞ; S2 ¼ $200 per setup: Seven retailers ði ¼ 3; j ¼ 1; . . . ; 7Þ D31 ¼ 10; 000; D35 ¼ 24; 000; D32 ¼ 20; 000; D33 ¼ 40; 000; D34 ¼ 12; 000; D36 ¼ 9000; D37 ¼ 18; 000 ðunits per yearÞ; S3 ¼ $50 per order: Designations (1) and (23)–(27) give 1 3 S1J ¼ 800; 1 3 S2J ¼ 600; S3J ¼ 350; 1 þ 133; 000ð0:8Þ ¼ 145; 413:33; H1 ¼ ð0:08 þ 0:8Þ 133; 000 3 1 H2 ¼ ð0:8 þ 2Þ 70; 000 0:5 þ 36; 000 þ 27; 000 0:25 þ 133; 000ð2 0:8Þ ¼ 310; 100; 3 u11 ¼ ; u21 ¼ 0:5; u22 ¼ ; u23 ¼ 0:25; H3 ¼ 133; 000ð5 2Þ ¼ 399; 000; D ¼ 133; 000: Eqs. (19), (20) and (13) give $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % 800ð310; 100Þ ¼ þ 0:25 þ 0:5 ¼ b2:26c ¼ 2; 600ð145; 413:33Þ 7 6sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 800 7 6 7 6 399; 000 þ 600 ð1Þ 2 K2 ¼ 4 þ 0:25 þ 0:55 ¼ b1:97c ¼ 1; 350ð145; 413:33 2 þ 310; 100Þ ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 800 600 JTC ð2; 1Þ ¼ 2 þ þ 350 ð145; 413:33 2 þ 310; 100 1 þ 399; 000Þ 2 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2ð1350Þð999; 926:26Þ ¼ $51; 959:62 per year: ð1Þ K1 Eqs. (21), (22) and (13) give $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % 600ð399; 000Þ ¼ þ 0:25 þ 0:5 ¼ b2:07c ¼ 2; 350ð310; 100Þ 7 6sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 7 6 399;000 7 6 800ð310; 100 þ Þ ð2Þ 2 K1 ¼ 4 þ 0:25 þ 0:55 ¼ b2:05c ¼ 2; 145; 413:33ð600 þ 350 2Þ ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 800 600 JTC ð2; 2Þ ¼ 2 þ þ 350 ð145; 413:33 4 þ 310; 100 2 þ 399; 000Þ 4 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2ð850Þð1; 600; 853:32Þ ¼ $52; 157:52 per year: ð2Þ K2 ð42Þ 580 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 Because JTC ð2; 1Þ < JTC ð2; 2Þ, the optimal integral values of K 1 and K 2 are 2 and 1. Hence, Eq. (12) gives the optimal basic cycle time T ð2; 1Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð1350Þ ¼ 0:05196 year ffi 19 days: 999; 926:26 Thus, the supplier fixes a setup every 38 days, each of the three manufacturers fixes a setup every 19 days and each of the seven retailers places an order every 19 days. Notice that Table 2 of Khouja (2003) shows the non-optimal basic cycle time qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð850Þ ¼ 0:03259 year ffi 12 days. T ð2; 2Þ ¼ 1;600;853:32 In particular, the optimal solution to the model based on the equal-cycle-time coordination mechanism is as follows: pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð800 þ 600 þ 350Þð145; 413:33 þ 310; 100 þ 399; 000Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2ð1750Þð854; 513:33Þ ¼ $54; 688:18 per year ½5:25% higher than JTC ð2; 1Þ; sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð1750Þ ¼ 0:063999 year ffi 24 days: T ð1; 1Þ ¼ 854; 513:33 JTC ð1; 1Þ ¼ Example 2. A four-stage multi-firm supply chain We extend Example 1 by incorporating two assemblers between the manufacturers and retailers, and assume all the parameter values as follows: One supplier ði ¼ 1; j ¼ 1Þ g 11 ¼ $0:08 per unit per year; h11 ¼ $0:8 per unit per year; D11 ¼ 133; 000 units per year; P 11 ¼ 399; 000 units per year; S11 ¼ $800 per setup: Three manufacturers ði ¼ 2; j ¼ 1; 2; 3Þ g 21 ¼ 0:83; h21 ¼ 2; D21 ¼ 70; 000; P21 ¼ 140; 000; S21 ¼ 200; g 22 ¼ 0:81; h22 ¼ 2:1; D22 ¼ 36; 000; P22 ¼ 108; 000; S22 ¼ 210; g 23 ¼ 0:79; h23 ¼ 1:8; D23 ¼ 27; 000; P23 ¼ 108; 000; S23 ¼ 205: Two assemblers ði ¼ 3; j ¼ 1; 2Þ g 31 ¼ 2:2; h31 ¼ 3; g 32 ¼ 1:9; h32 ¼ 3:1; D31 ¼ 75; 000; D32 ¼ 58; 000; P31 ¼ 150; 000; P32 ¼ 116; 000; S31 ¼ 125; S32 ¼ 130: Seven retailers ði ¼ 4; j ¼ 1; . . . ; 7Þ h41 ¼ 5; D41 ¼ 10; 000; S41 ¼ $50 per order; h42 ¼ 5:1; D42 ¼ 20; 000; S42 ¼ 48; h43 ¼ 4:8; D43 ¼ 40; 000; S43 ¼ 51; h44 ¼ 4:7; D44 ¼ 12; 000; S44 ¼ 53; h45 ¼ 5:2; D45 ¼ 24; 000; S45 ¼ 50; h46 ¼ 5; D46 ¼ 9000; S46 ¼ 49; h47 ¼ 4:9; D47 ¼ 18; 000; S47 ¼ 52: Designations (1)–(5) give 1 3 S1J ¼ 800; 1 3 S2J ¼ 615; S3J ¼ 255; S4J ¼ 353; 1 H1 ¼ 133; 000 0:88 þ 133; 000ð0:8Þ ¼ 39; 013:33 þ 106; 400 ¼ 145; 413:33; 3 1 H2 ¼ ½70; 000ð0:5 2:83Þ þ 36; 000 2:91 þ 27; 000ð0:25 2:59Þ 3 u11 ¼ ; u21 ¼ 0:5; u22 ¼ ; u23 ¼ 0:25; u31 ¼ 0:5; u32 ¼ 0:5; þ ½70; 000ð2Þ þ 36; 000ð2:1Þ þ 27; 000ð1:8Þ 106; 400 ¼ 151; 452:5 þ 264; 200 106; 400 ¼ 309; 252:5; H3 ¼ ½75; 000ð0:5 5:2Þ þ 58; 000ð0:5 5Þ þ ½75; 000ð3Þ þ 58; 000ð3:1Þ 264; 200 ¼ 340; 000 þ 404; 800 264; 200 ¼ 480; 600; H4 ¼ ½10; 000ð5Þ þ 20; 000ð5:1Þ þ 40; 000ð4:8Þ þ 12; 000ð4:7Þ þ 24; 000ð5:2Þ þ 9000ð5Þ þ 18; 000ð4:9Þ 404; 800 ¼ 253; 600: K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 581 Eqs. (36) and (34) give $sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi % 800ð309; 252:5Þ ¼ þ 0:25 þ 0:5 ¼ b2:24c ¼ 2; 615ð145; 413:33Þ 6sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 7 6 7 6 7 480; 600 800 þ 615 ð1Þ 2 K2 ¼ 4 þ 0:25 þ 0:55 ¼ b2:35c ¼ 2; 255ð145; 413:33 2 þ 309; 252:5Þ 7 6sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 800 615 7 6 7 6 253; 600 þ þ 255 ð1Þ 4 2 K3 ¼ 4 þ 0:25 þ 0:55 ¼ b1:26c ¼ 1; 353ð145; 413:33 4 þ 309; 252:5 2 þ 480; 600Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 800 615 255 JTC ð2; 2; 1Þ ¼ 2 þ þ þ 353 ð145; 413:33 4 þ 309; 252:5 2 þ 480; 600 1 þ 253; 600Þ 4 2 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2ð1115:5Þð1; 934; 358:32Þ ¼ $65; 692:87 per year: ð1Þ K1 Similarly, Eqs. (37)–(40) and (34) give ð2Þ K1 ð3Þ K2 ð4Þ K2 ð6Þ K3 ð2Þ ¼ 2; K3 ¼ 2; ð3Þ K1 ð3Þ ¼ K2 ¼ 2; ¼ 1; K2 ð6Þ ¼ 1; K2 ð2Þ ¼ 2; JTC ð2; 2; 1Þ ¼ $65; 692:87 per year; ¼ 2; ð3Þ K3 ¼ 1; JTC ð2; 2; 1Þ ¼ $65; 692:87 per year; ð4Þ K3 ¼ 2; ð4Þ ¼ 1; ð6Þ K1 K1 ¼ 2; ¼ 2; JTC ð2; 2; 1Þ ¼ $65; 692:87 per year; JTC ð2; 2; 1Þ ¼ $65; 692:87 per year: Hence, the optimal integral values of K 1 ; K 2 and K 3 are 2, 2 and 1, and Eq. (33) gives the optimal basic cycle time T ð2; 2; 1Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð1115:5Þ ¼ 0:03396 year ffi 13 days: 1; 934; 358:32 Thus, the supplier fixes a setup every 26 days, each of the three manufacturers fixes a setup every 26 days, each of the two assemblers fixes a setup every 13 days, and each of the seven retailers places an order every 13 days. In particular, the optimal solution to the model based on the equal-cycle-time coordination mechanism is as follows: pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð800 þ 615 þ 255 þ 353Þð145; 413:33 þ 309; 252:5 þ 480; 600 þ 253; 600Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2ð2023Þð1; 188; 865:83Þ ¼ $69; 355:25 per year ½5:58% higher than JTC ð2; 2; 1Þ; sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð2023Þ ¼ 0:05834 year ffi 22 days: T ð1; 1; 1Þ ¼ 1; 188; 865:83 JTC ð1; 1; 1Þ ¼ 7. Conclusions and future research We present a review of some work relating to algebraic solutions to inventory systems from 2006 to 2009 in Section 1. The main contribution of the note to the literature is twofold: first, we establish a more pragmatic model than that of Khouja (2003) by including the five realistic conditions listed in Section 2. Secondly, we provide a much more simplified optimal solution procedure which is developed using the perfect squares method so that users may easily understand and apply than that provided in Khouja (2003) or Cárdenas-Barrón (2007), and illustrate the procedure through the two numerical examples. The limitation of our model and its optimal solution procedure may be that both cannot be readily modified to adapt the use of the integer powers of two multipliers mechanism in order that the joint total relevant cost can be further reduced. Khouja (2003) shows numerically that saving may be significant when going from equal-cycle-time to integer multipliers mechanism, while the saving is less pronounced when going from integer multipliers to integer powers of two multipliers mechanism. We generally believe that it is not worthwhile to employ the integer powers of two multipliers mechanism with which inherently complicated computations are accompanied. Three ready extensions of our model that constitutes future research endeavors in this field are as follows: first, following the evolutions of a three- and four- stage multi-firm supply chain shown in Sections 3 and 5, we can readily formulate and algebraically analyze the integrated model of a five- or higher-stage multi-firm supply chain. Secondly, modifying designations (3)–(5) and following the evolutions shown in Sections 3 and 5, we can solve the integrated model of a n-stage ðn ¼ 2; 3; . . .Þ multi-firm supply chain for an equal-cycle-time or an integer multiplier at each stage with lot streaming, and deduce the optimal solution to Ben-Daya and Al-Nassar’s (2008) model. Thirdly, using not only the perfect squares method but also the complete squares method advocated in Leung (2008a,b), we can solve the integrated model of a n-stage multi-firm supply chain for an equal-cycle-time or an integer multiplier at each stage with complete backorders allowed for some/all downstream firms (or retailers), and without or with lot streaming, and individually deduce the optimal solution to Wee and Chung’s (2007) model (where the three inspection costs are assigned to be zero) and Wee and Chung’s (2007) model. 582 K.N.F. Leung / Transportation Research Part E 45 (2009) 572–582 Acknowledgements The author is grateful to the two anonymous reviewers and to the Editor-in-Chief, Dr. Wayne K. Talley, for helpful comments and suggestions on the original version of this note. Appendix A Substituting Eq. (16) into the two conditions of (17) yields the following inequality: K 1 ðK 1 1Þ < S1J H2 6 K 1 ðK 1 þ 1Þ: S2J H1 ð1Þ We can derive a closed-form expression concerning the optimal integer K 1 as follows: S1J H2 þ 0:25 6 K 1 ðK 1 þ 1Þ þ 0:25 S2J H1 S1J H2 þ 0:25 6 ðK 1 þ 0:5Þ2 () ðK 1 0:5Þ2 < S2J H1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J H2 () K 1 0:5 < þ 0:25 6 K 1 þ 0:5 S2J H1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi S1J H2 S1J H2 () þ 0:25 0:5 6 K 1 < þ 0:25 þ 0:5: S2J H1 S2J H1 K 1 ðK 1 1Þ þ 0:25 < ð1Þ From the last inequality, we can deduce that the optimal integer K 1 is represented by expression (19). In an analogous ð1Þ manner, the optimal integer K 2 represented by expression (20) is derived. References Ben-Daya, M., Al-Nassar, A., 2008. An integrated inventory production system in a three-layer supply chain. Production Planning and Control 19 (2), 97–104. Cárdenas-Barrón, L.E., 2001. The economic production quantity (EPQ) with shortage derived algebraically. International Journal of Production Economics 70 (3), 289–292. Cárdenas-Barrón, L.E., 2007. Optimal inventory decisions in a multi-stage multi-customer supply chain: a note. Transportation Research Part E: Logistics and Transportation Review 43 (5), 647–654. Cárdenas-Barrón, L.E., 2008. Optimal manufacturing batch size with rework in a single-stage production system: a simple derivation. Computers and Industrial Engineering 55 (4), 758–765. Chang, S.K.J., Chuang, P.C.J., Chen, H.J., 2005. Short comments on technical note – the EOQ and EPQ models with shortages derived without derivatives. International Journal of Production Economics 97 (2), 241–243. Chiu, Y.S.P., Lin, H.D., Cheng, F.T., 2006. Technical note: optimal production lot sizing with backlogging, random defective rate, and rework derived without derivatives. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 220 (9), 1559–1563. Chung, C.J., Wee, H.M., 2007. Optimizing the economic lot size of a three-stage supply chain with backordered derived without derivatives. European Journal of Operational Research 183 (2), 933–943. Grubbström, R.W., 1995. Modeling production opportunities: an historical overview. International Journal of Production Economics 41 (1–3), 1–14. Grubbström, R.W., Erdem, A., 1999. The EOQ with backlogging derived without derivatives. International Journal of Production Economics 59 (1–3), 529– 530. Khouja, M., 2003. Optimizing inventory decisions in a multi-stage multi-customer supply chain. Transportation Research Part E: Logistics and Transportation Review 39 (3), 193–208. Leung, K.N.F., 2008a. Technical note: A use of the complete squares method to solve and analyze a quadratic objective function with two decision variables exemplified via a deterministic inventory model with a mixture of backorders and lost sales. International Journal of Production Economics 113 (1), 275–281. Leung, K.N.F., 2008b. Using the complete squares method to analyze a lot size model when the quantity backordered and the quantity received are both uncertain. European Journal of Operational Research 187 (1), 19–30. Minner, S., 2007. A note on how to compute order quantities without derivatives by cost comparisons. International Journal of Production Economics 105 (1), 293–296. Teng, J.T., 2008. A simple method to compute economic order quantities. European Journal of Operational Research. doi:10.1016/j.ejor.2008.05.019. Wee, H.M., Chung, C.J., 2007. A note on the economic lot size of the integrated vendor–buyer inventory system derived without derivatives. European Journal of Operational Research 177 (2), 1289–1293. Wee, H.M., Wang, W.T., Chung, C.J., 2009. A modified method to compute economic order quantities without derivatives by cost-difference comparisons. European Journal of Operational Research 194 (1), 336–338.
© Copyright 2026 Paperzz