Lecture 22Section 11.2 The Integral Test; Comparison Tests Jiwen He 1 1.1 The Integral Test The Integral Test The Integral Test Let ak = f (k), where f is continuous, decreasing and positive on [1, ∞), then Z ∞ ∞ X ak converges iff f (x)dx converges 1 k=1 n X Z n n−1 X Since f decreases on [1, ∞) ak . Since f is positive ak < f (x)dx < 1 k=2 k=1 Z ∞ ∞ ∞ X X on [1, ∞), ak ≤ f (x)dx ≤ ak . Therefore, either both converge or k=2 1 k=1 both diverge. 1.2 Applying the Integral Test The p-Sereis (The p-Sereis) ∞ X 1 1 1 = 1 + p + p + · · · converges kp 2 3 iff p > 1. k=1 Proof. Z ∞ ∞ X 1 1 converges iff dx converges. p k xp 1 k=1 Z ∞ We know that 1 dx converges iff p > 1. p x 1 ∞ X 1 It follows that converges iff p > 1. kp k=1 1 Example (p = 1): Harmonic Series (The p-Sereis) ∞ X 1 1 1 = 1 + p + p + · · · converges p k 2 3 iff p > 1. k=1 Harmonic Series (p = 1) When p = 1, this is the harmonic series ∞ X 1 1 1 = 1 + + + ··· , k 2 3 k=1 and the related improper integral is Z ∞ ∞ 1 dx = ln x1 = lim ln x = ∞. x→∞ x 1 Since this impproper integral diverges, so does the harmonic series. Example (p = 2) (The p-Sereis) ∞ X 1 k=1 kp =1+ 1 1 + p + · · · converges 2p 3 iff p > 1. (p = 2) When p = 2, this is ∞ X 1 1 1 = 1 + 2 + 2 + ··· , k2 2 3 k=1 and the related improper Z ∞ integral is ∞ 1 dx = −x−1 1 = 1 − lim x−1 = 1. 2 x→∞ x 1 By the integral test,∞ Z ∞ ∞ X 1 X 1 1 =1+ ≤1+ dx = 2 2 2 2 k k x 1 k=1 Example Show that ∞ X k=2 k=2 1 diverges. k ln k The related Z ∞ improper integral Z ∞ is ∞ 1 1 dx = du = ln uln 2 = lim ln x − ln ln 2 = ∞. x→∞ x ln x 2 ln 2 u Since this impproper integral diverges, so does the infinite series. Show that ∞ X k=2 1 converges. k(ln k)2 The related Z ∞ improper integral Z ∞ is ∞ 1 1 1 1 dx = du = −u−1 ln 2 = − lim x−1 = . 2 2 x→∞ x(ln x) ln 2 ln 2 2 ln 2 u Since this impproper integral diverges, so does the infinite series. 2 The Integral Test for the nth Remainder P∞ k=n+1 ak , n ≥ 1 Let ak = f (k), where ∞ f is continuous, positive on [n, ∞), then Z ∞ decreasing andX ∞ X ak ≤ f (x)dx ≤ an + ak n k=n+1 Z ∞ or equivalently f (x)dx ≤ n+1 Let P∞ Let R∞ P∞ k=1 Z k=n+1 ∞ ak ≤ f (x)dx n k=n+1 ak be convergent. Its nth remainder is defined as ∞ ∞ n ∞ X X X X Rn = ak = ak − ak = ak − sn k=n+1 n ∞ X k=1 k=1 k=1 R∞ k=1 ak be convergent, so do 1 f (x)dx. Then, ∀ > 0, ∃N s.t. for n > N , f (x)dx < , and ∞ ∞ n X X X 0 < Rn = ak = ak − ak < k=n+1 Example Use a partial sum to approximate ∞ X k=1 k=1 k=1 1 with an error < 0.01 k2 + 1 ∞ remainder X Estimating the nth Rn = Z ∞ n series X 1 1 1 of the − < dx 2+1 k2 + 1 k2 + 1 x n k=1 k=1 ∞ π = tan−1 xn = − tan−1 n. 2 − tan−1 n < 0.01, we need n ≥ tan( π2 − 0.01) ≈ 100. n X 1 1 1 1 1 sn = = + + + ··· = 1.066 . . . k2 + 1 2 5 10 10001 k=1 ∞ X Therefore 1 1.066 . . . < < 1.076 . . . 2 k +1 For π 2 k=1 1.3 Comparison Tests Basic Series that Converge or Diverge ∞ ∞ X X ak converges iff ak converges, ∀j ≥ 1. k=1 k=j In determining whether a series converges, it does P not matter where the summation begins. Thus, we will omit it and write ak . Basic Series that Converge 3 X Geometric series: xk , X 1 , kp p-series: if |x| < 1 if p > 1 Basic Series that Diverge Any series X for which lim ak 6= 0 ak p-series: k→∞ X 1 , kp if p ≤ 1 Basic Comparison Test Basic Comparison Test Suppose that 0 ≤ ak ≤X bk for sufficiently large k. X If bk converges, then so does ak . X X If ak diverges, then so does bk . Comparison with p-Series X ak converges if X ak diverges if 0 ≤ ak ≤ 0≤ c , kp c ≤ ak , kp p > 1. p ≤ 1. Comparison with Geometric Series X ak converges if 0 ≤ ak ≤ c xk , |x| < 1. Examples X X 1 1 converges by comparison with 3 2k + 1 k3 X 1 1 1 < 3 and converges. 2k 3 + 1 k k3 X 1 X k3 converges by comparison with 5 4 k + 4k + 7 k2 3 3 X k k 1 1 < 5 = 2 and converges. k 5 + 4k 4 + 7 k k k2 X X 2 1 converges by comparison with 3 2 k −k k3 X 2 1 1 2 < 3 = 3 , k ≥ 2, and converges. 3 2 3 k −k k − k /2 k k3 4 Examples X X 1 1 diverges by comparison with 3k + 1 3(k + 1) 1 1 1X 1 > and diverges. 3k + 1 3(k + 1) 3 k+1 X X 1 1 diverges by comparison with ln(k + 6) k+6 ln(k + 6) → 0 as k → ∞, ln(k + 6) < k + 6 for k large k+6 X 1 1 1 > for k large and diverges. ln(k + 6) k+6 k+6 Limit Comparison Test Basic Comparison Test ak =L Suppose that ak > 0 and bk > 0 for sufficiently large k, and that lim k→∞ bk for some L > 0. X X ak converges iff bk converges. ak = L means that ak ≈ Lbk for large k bk ak = 0, and If lim k→∞ bk X X if bk converges, then ak converges. lim k→∞ If lim k→∞ ak = ∞, and bk X if ak converges, then Example X 1 k3 − 1 converges by comparison with For large k, k3 bk converges. X 1 . k3 1 1 differs little from 3 . −1 k k3 and X 1 1 k3 ÷ 3 = 3 → 1 as k → ∞ −1 k k −1 X 1 converges. k3 5 Example X 3k 2 + 2k + 1 k3 +1 For large k, diverges by comparison with X3 k 3k 2 3 3k 2 + 2k + 1 differs little from = . 3 3 k +1 k k 3k 3 + 2k 2 + k 3k 2 + 2k + 1 3 ÷ = → 1 as k → ∞ 3 k +1 k 3k 3 + 3 and X3 diverges. k Example √ X 5 k + 100 X 5 √ √ converges by comparison with 2k 2 2k 2 k − 9 k √ √ 5 k + 100 5 k 5 √ √ differs little from √ = 2. For large k, 2 2 2k 2k k − 9 k 2k k √ √ 5 k + 100 10k 2 k + 200k 2 5 √ √ ÷ 2 = √ √ → 1 as k → ∞ 2k 2 k − 9 k 2k 10k 2 k − 45 k and X 5 converges. 2k 2 Outline Contents 1 Integral Test 1.1 Integral Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 1 1 3
© Copyright 2026 Paperzz