193 Wallen bürg, Amniotic fluid. I. Review article •J. Perinat. Med. 5 (1977) 191 The amniotic fluid L Water and electrolyte homeostasis Henk C. S. Wallenburg Department of Obstetrics and Gynecology, Erasmus University, Rotterdam, the Netherlands We know very little about the production and disposal of the liquor amnii; the only sure fact is that, in this country, nearly 2000 tons go down the drain every year. (D. C. A. BEVIS, 1968, Great-Britain) l Introduction Over the past two decades the development of new sampling and analytical techniques together with new possibilities for fetal diagnosis and treatment have stimulated interest not only in the composition but also in the dynamics of amniotic fluid. It has become evident that this fluid is neither a passive accumulation of waste products such äs fetal urine nor just a stagnant pool for fetal recreation and protection, but a compartment of rapidly exchanging water and electrolytes in a dynamic equilibrium with the fetal and maternal compartments. In the following paragraphs it will be attempted to present a brief review of some of the factors involved in maintenance of fluid and electrolyte homeostasis of the amniotic fluid. l. l Outline of the problem Many investigative approaches have been used, including: morphologic studies on the histology and ultrastructure of the placental and reflexed membranes, the umbilical cord and the fetal skin; in vivo experiments in various animals and in J. Perinat. Med. 5 (1977) Curriculum vitae HENK C. S. WALLENBURG, M.D., Ph.D., born in 1938. Received his M.D. at the Free University, Amsterdam, in 1961. Resident in Obstetrics and Gynecology from 19651970, at the same University. In 1971 a Ph.D. was obtained on a thesis "Morphology and Pathogenesis of Placental Infarcts", at the Free University, Amsterdam. 19711972 A ssistant-Professor of Ob-Gyn, University of Pittsburgh, Medical School, Pittsburgh, Pa, U.S.A. 1972 present Associate-Professor of Ob-Gyn and Director of the Department of Obstetrics, Erasmus University, Rotterdam. Main fields of interest: Physiology and pathophysiology ofuteroplacentalblood flow, and mechanisms of placental transfer, in particularofflow-limited membrane transport. humans; in vitro experiments on isolated membranes and umbilical cord. Morphologic investigations can provide data which may, to some extent, support or refute hypotheses resulting from physiologic or clinical flndings. Isolated morphologic data should be interpreted with caution because of the very complex relationship between the many structures which might contribute to the origin, exchange and composition of the amniotic fluid. 14* 194 Wallenburg, Amniotic fluid. I. In vivo experiments in humans are limited to intermittent sampling of amniotic fluid by means of amniocentesis or after rupture of the membranes during labor, and to studying the disappearance of certain dyes, organic substances and isotopes injected into the amniotic cavity. The recently developed technique of in vivo measurement of fetal urine production by means of ultrasound must be regarded äs a major step forward to a better understanding of the contribution of the fetal kidneys to bulk changes in amniotic fluid. The use of experimental animals, in which access can be gained to the fetal and maternal compartments and radioisotopes can be applied more freely, offers possibilities for more extensive research. However, the problem of valid extrapolation of the results to man and the need for anesthesia introduce issues Which should be carefully evaluated. In this respect, the application of chronically instrumented models in some species presents an important advantage over acute preparations. Some of the problems mentioned canbesolved by in vitro experimentation in which one single system can be isolated and many of the variables can be controlled. But here another difficulty arises: how viable is the preparation and how comparable are the conditions under which the experiments are performed with those in the in vivo s täte. It follows that there is no single experimental method which could be called the "method of choice" for the study of aiririiotic fluid production and exchange. The results of each study have to be evaluated against the background of the limitations of the experimental method involved. 2 Possible pathways of amniotic fluid production and exchange The different types of epithelial structures which line the amniotic cavity and the various fetal organs which have direct Communications with the amniotic fluid constitute possible sites of origin and/or routes of exchange of amniotic fluid (Fig. 1). 2. l The placental and reflexed membranes The cells of the monolayered amniotic epithelium are flattened in early pregnancy and become more and more cuboidal or columnar with advancing gestation. The free surface of the cells is covered with microvilli, structures usually supposed to be involved in exchange processes. All cells contain a nucleus and, at least in early pregnancy, an extensive rough endoplasmic reticulum, indicating ä capacity for protein synthesis for use outside the cell. With amniotic fluid respiratory tract gastro-intestinal tract u r m a r y tract placental and reflexed membranes uterine wall umbilical cord fetal skin Fig. 1. Possible pathways of amniotic fluid production and exchange. J. Perinat. Med. 5 (1977) 195 Wallenburg, Amnioticfluid. I. advancing gestation an increasing number of "fibrillar" cells with fewer mitochondria and less rough endoplasmic reticulum is found [35]. Lipid is a prominent intracellular component of term amniotic epithelium. The histology of the amniotic epithelium suggests, therefore, that the amnion cells are involved in exchange, synthesize protein, and possibly secrete proteins and lipid. BEVIS [8] showed that cultured cells from the placental amnion and, in particular, from the area within a 5-cm radiusaround the cord insertion can synthesize protein virtually identical with normal amniotic fluid protein. Some of the amnion cells are closely apposed but many are separated by intercellular channels which open directiy into the amniotic cavity. These intercellular channels explain the results of in vitro experiments showing that bulk flow of water across the term amnion in response to osmotic or hydraulic gradients is almost 100 times greater than the transfer of isotopic water by simple diffusion [33] (Tab. I). Such a bulk flow can only occur in the presence of channels or spaces containing water in unaltered solvent form. The amnion, therefore, appears to function s a molecular sieve. An average pore radius between 20 and 30 has been calculated on the basis of a comparison between the hydraulic permeability (Lp)* and the diffusional permeability (P)* to water [28]. The in vitro transfer rates of solutes such s urea, creatinine,glucose,sodium,potassium and chloride are much lower than that of water. It has been Tab. I. Definitions of bulk flow and diffusional flow. Movement of water across a porous membrane in response to osmotic or hydrostatic gradients Bulk flow = nondiffusional flow Random movement of water molecules across a membrane to establish equal Diffusional flow concentrations at both sides * Membrane hydraulic permeab ity (Lp) is derived from: Jv = Lp.AP fpr ΔΤΓ = 0 (see equati n 1) and has the dimensions of cm3.dynes"1.sec~1. Diffusional permeability (P) is derived from J = P.AC for ΔΡ = 0 and has the dimensions of cm.sec."1. J. Perinat. Med. S (1977) demonstrated that sodium is transferred across the chorio-amnion by simple diffusion [21]. These in vitro experiments provide Information on diffusional exchange and bulk flow of water which cannot be obtained in in-vivo experiments with radioisotopes and, therefore, are indispensable for an understanding of the overall pattern of water movement. In vivo evidence of a secretory and absorptive function of the chorio-amnion for water and solutes includes: the presence of amniotic fluid very early in pregnancy, even in the absence of a fetus; the experimental finding that fluid reaccumulates after removal of the fetus in the rhesus monkey [7]; and the results of studies in the rhesus monkey in which amniotic fluid was replaced with solute free water [34]. In vivo transfer of water and solute is governed by hydraulic, osmotic and electrochemical forces. Water(volume)movement occurs s the result of a net imbalance between differences in transmembrane hydraulic pressure and effective osmotic pressures. This can be described by the following relationship, obtained from linear non-equilibrium thermodynamics in which Jv = transmural volume flux Lp = membrane hydraulic permeability ΔΡ = transmembrane hydraulic pressure difference ΔτΓί = transmembrane osmotic pressure difference due to solute i σ^ = reflection coefficient of membrane to solute i The reflection coefficient σ is defined s the ratio of membrane osmotic and hydraulic permeability — which both have the dimensions of cm3.dynes"1. sec"1 — and, therefore, σ has no dimension. The enormous hydraulic permeability and the partial permeability to many solutes give the chorioamnion the characteristics of a "partially semi-permeable" membrane, for which the reflection coefficient for many solutes is less than unity. For instance, the hydraulic permeability of tiie chorioamnion to water is in the magnitude of 20 X l O"11 .cm3.dyn"1 . sec"1 at physiologic transmembrane pressure differences [1], The osmotic permeability to water on 196 Wallenburg, Amniotic fluid. I. the basis of an osmotic pressure difference due to glucose isonly 12 Χ 10"12 cm3.dyn"1.sec""1, because the chorioamnion is not completely impermeable to glucose molecules. This yields a reflection coefficient of 0.06 for glucose. Solutes with membrane a's less than one will exert less than their calculated transmembrane osmotic pressure differences on water flux, whereas if σ of a membrane to a solute is unity, that solute exerts the f ll magnitude of its calculated "ideal" transmembrane osmotic pressure on water flux. The osmotic pressure difference Δπ of a solute can be described by the VAN 'τ HOFF equation: 2.2 The umbilical cord (2) ΔΤΓ = ψ in which n = the number of moles of solute particles, R = the universal gas constant, T = the absolute temperature, and V = the volume of the solution. A biologically important consequence is that in a non-equilibrium Situation net water transfer can occur against a calculated osmotic pressure gradient if the gradient results from solutes with significantly different reflection coefficients [26]. Example: Compartments l and 2 have identical volumes and are separated by amnion. Compartment l contains 0.2 Moles of urea (aur = 0.02) and compartment 2 contains 0.1 Moles of glucose (°gi = 0.06). The transmembrane hy draulic pressure difference is supposed to be zero. It follows from equations (1) and (2) that: 1 2 - = L RT the available data indicate that any net transfer would appear to be from tfre amniotic fluid to the mother. Other factors which might play an important part in thetransferof solutes across biological membranes are that transport of one solute may be coupled with transport of another solute (solute-solute interaction), and the water-solute interaction. At present there is no convincing evidence of the existence of active transport — that is transport dependent on an energy source — across the membranes. Χ 0.1 - aur X 0.2) J^ 2 =L P RT (0.006-0.004) which under non-equilibrium conditions means a net water flux from compartment l to compartment 2, whereas The same phenomenon may be observed in a three-compartment System if the compartments are divided by two membranes — e.g. amnion and chorion — with different reflection coefficients to the same solute. These phenomena might explain the transfer of water from the maternal compartment to the amniotic fluid which must take place but cannot be explained by osmotic or hydraulic forces since The epithelium consists of a single layer of cells until approximately the 12th week when it becomes first bilaminar and later consists of three or more layers. The cells of the term epithelium are predominantly of the "fibrillar" type, suggesting little synthetic or metabolic abilities [29]. Before the 6th month of pregnancy the adjacent cell membranes are fused but later intercellular channels appear. It has been shown in in-vitro experiments that inward and outward fluxes of 50 and 40 ml of water per hour can be achieved between amniotic fluid and cord blood [30], but these experiments cannot provide Information about bulk flow. The results of in vivo experiments with deuterated [2] and tritiated water [17] also point to the umbilical cord s a possible site of water transfer between the amniotic fluid and the fetal circulation. These data could be compatible with, the existence of bulk flow which could be mediated by the intercellular channels, like in the chorioamnion. 2.3 The fetal skin In early pregnancy the fetal epidermis is composed of a few layers of cells interposed between a basal and a superficial cell layer. The superficial cells (periderm) gradually disappear by 17-20 weeks and the underlying epithelium begins to keratinize. A complete stratum corneum is present by approximately 25 weeks. Before keratinization occurs the peridermal cells show microvilli, GOLGI apparatus, ribosomes and an endoplasmic reticulum indicating the possibility of functional activity. In vivo experiments have shown that urea, creatinine and J. Perinat. Med. 5 (1977) 197 Wallenburg, Amniotic fluid. I. electrolytes can be transferred across the fetal skin in early midpregnancy [3]. In vitro experimentation has confirmed the permeability of human fetal skin to water and sodium [21] until keratinization occurs. By approximately 25 weeks the keratinized fetal skin appears to function no longer äs a pathway for exchange. 2.4 The gastrointestinal tract The presence of epithelial cells, lanugo hairs and vernix caseosa in the fetal stomach and in meconium clearly indicates that the fetus can swallow in utero. Radio-opaque dyeinjectedinto the amniotic cavity of pregnant women at term is detected in the fetal stomach and small bowel äs early äs 20 minutes following injection [25]. The fact that the dye appears to become concentrated inside the fetal stomach suggests that much .of the water is absorbed. In an ingenious study PRITCHARD [31, 32] showed that the fetus swallows chromium tagged maternal red cells injected into the amniotic cavity. He found that a 16-week fetus swallowed 7 ml, a 20-21 week fetus 16 ml, a 28-week fetus 120 ml, and term fetuses between 210 and 760 ml per 24 hours. The data on fetal swallowing in midpregnancy have been confirmed by means of injection of radioactive colloidal gold into the amniotic sac [4]. In midpregnancy the percentage of the liquor volume swallowed per 24 hoursis small, somewhere between 2 and 5 %; at term, however, the fetus may swallow per 24 hours half, or even more, of the total amniotic fluid volume. Therefore, fetal swallowing must be accepted to influence the turnover of amniotic fluid water and solutes. 2.5 The respiratory tract There is no doubt that the respiratory tract of the fetus secretes a special liquid that fills the future air spaces. This liquid appears to reach the amniotic fluid because the surface-active lecithins which it contains can be demonstrated in amniotic fluid samples. Nothing is known about the amount of lungfluid producedinhuman fetuses, or how much of it is passed into the amniotic fluid. Even if a considerable amount of water would be secreted, J. Perinat. Med. 5 (1977) like in fetal lambs[6],much of it could be swallowed before re achin g the amniotic cavity. Although fetal ehest movements [9, 36] occur and may cause some displacement of fluid, the existence in normal fetuses of an inward flow of fluid to the tracheobronchial tree in late pregnancy remains disputed. On the one hand, after Lipiodol amniography no contrast medium is detected in the fetal or neonatal lung [20] except in a few highly pathologic pregnancies, probably due to fetal gasping movements äs aresponse tohypoxemia [10]. The small amount of radioactivity found in fetal lungs after injection of radioactive colloidal gold into the amniotic sac in midpregnancy [4] also suggests that the lungs play little part in the absorption of amniotic fluid. On the other hand, the possibility of significant absorption of amniotic fluid by the fetal lungs is supported by the finding of polyhydramnios in cases of aplasia of the trachea [16] naso-pharyngeal teratoma [12] and multiple peripheral lung cysts [19]. 2.6 The urinary tract The presence of urine in the bladder of fetuses from 11 weeks to term leaves no doubt of the existence of fetal renal activity. Actual proof of fetalmicturition in utero and figures for the volumes of urine passed into the amniotic cavity have only recently been established by means of an ingenious ultrasonic technique for in vivo nieasurement of fetal bladder volume [11, 37]. The fetal bladder can be demonstrated on a compound B-scan ultrasonogram of the maternal ab dornen and appears to fill and empty at regulär intervals. The largest sagittal diameter — from the bladder fundus to the bladder neck —, the maximum transverse distance and the largest antero-posterior dimension can be measured and allow calculation of bladder volume. The increase in bladder volume over a l hourperiod of time during the process of filling allows computation of the fetal urine production rate per hour. Fetal urine production rates in normal pregnancies of 25—42 weeks duration show a rapid and linear increase in mean fetal urine production from 3.5 ml per hour at 25 weeks to 26 ml per hour at 39 weeks [37, 27]. After 40 weeks there is a sharp fall in fetal urine production [27]. Wallenburg, Amniotic fluid. I. 198 It is striking that at term the amount of amniotic fluid swallowed by the fetus is approximately equal to the amount of urine produced (500-700 ml per 24 hours). These data imply that like fetal swallowing, fetal micturition also contributes to the turnover of amniotic fluid. However, no direct relationship was found between amniotic fluid volume and fetal urine production between the 36th and42ndweek in 67 normal pregnancies [27]. Fetal urine is hypotonic compared with maternal and fetal plasma, and amniotic fluid throughout pregnancy. The fmding that in the third trimester the concentrations of sodium and chloride in both amniotic fluid and fetal urine decrease, whereas the concentrations of urea and creatinine increase in both fluids suggests that fetal urine could significantly contribute to amniotic fluid compositon in the last part of gestation (Tab. II). 3 Behavior of amniotic fluid water and electroly tes The foregoing paragraphs point to a number of possible sites where water and solutes can enter the amniotic cavity by means of continuous diffusional processes or bulk flow: the chorioamnion and the cord, the fetal skin and the fetal respiratory tract. Fetal urine is added intermittently to the amniotic fluid. As possible pathways of continuous outflow can be regarded the chorioamnion and the cord, whereas fetal swallowing provides phasic disposal of quantities of amniotic fluid. The relative importance of these routes and mechanisms — continuous versus phasic — of ingress into and egress from the amniotic fluid appears to change with advancing gestation. Also the importance of the various sites of entry or removal may differ for different constituents of the amniotic fluid. This makes it extremely hazardous to derive general conclusions about the dynamics of amniotic fluid from observations on the behavior of a certain constituent, such äs water, in a certain period of gestation. In the followihg paragraphs we shall nevertheless examine some observations relevant to the dynamics of amniotic fluid water and electrolytes, first in the first half of pregnancy, and then in late pregnancy. For obvious reasons little Information is available about mid-pregnancy between approximately 20 and 30 weeks. 3. l First half of pregnancy Water makes up the bulk of amniotic fluid volume. Volume has been estimated at hysterotomy by removing the intact sac and measuring the amount of fluid obtained. At 12 weeks the mean volume is 58 ml (ränge 35-103). With an approximately linear increase of 20—25 ml/ week a mean volume of 170 ml (ränge 159-342 ml) is reached at 16 weeks, followed by a more rapid increase of 50—100 ml/week to reach a mean value of 500 ml (ränge 226-515 ml) at 20 weeks. There appears to be an enormous Variation in amniotic fluid volume s between individuals, but good correlations exist between amniotic fluid volume and fetal weight, crown-rump length, placental weight and the duration of the amenorrhea [5], The osmolality äs well äs the concentrations of sodium, potassium and chloride remain virtually constant during the first half of pregnancy and are slightly lower than the values in matemal and fetal plasma. Amniotic fluid composition appears to be more closely related to the extracellular fluid composition of the fetus than to that of the mother [21 ], suggesting that the fetus contributes to the composition of amniotic fluid. Combining the few available data on fetal swallowing and voiding with those of the increase in amniotic fluid volume around the 20 th week a tentative impression can be gained of the Tab. II. Average production rate, osmolality, and electrolyte and urea concentrations of fetal urine at 20 and 38 weeks of pregnancy [4, 24, 27 J. duration of pregnancy (wks) production rate (ml/24 hrs) osmolality (m.osm./l) Na+ K+ (mEq/1) er urea (mg/100 ml) 20 38 50 600 130 · 137 60 44 3.0 4.7 64 41 20 102 J. Perinat. Med. 5 (1977) 199 Wallenburg, Amniotic fluid. L importance of non-phasic shifts of water and electrolytes. The daily increase in amniotic fluid volume at this stage of pregnancy is approximately 16 ml and the same volume is swallowed by the fetus. The few ultrasonic measurements of fetal urine production around the 20th week of pregnancy indicate that the fetus voids about 50 ml per day. This would mean that about 18 ml of water has to be removed from the amniotic cavity per 24 hours. Recent data on bulk flows through human amniochorion in vitro in combination with estimated invivo hydraulic and osmotic pressures are in agreement with such a flow outward from the amniotic cavity [l]. Preliminary data suggest that movement of water out of the amniotic sac could be enhanced by a direct influence pf amniotic fluid prolactin on the properties of the amnio-chorion [23]. Based on concentrations pf electrolytes in amniotic fluid and fetal urine [4] it can be estimated that the fetal kidney already significanüy contributes to the amniotic fluid composition at this stage of pregnancy. Virtually all of the K* and Cl~ needed can be provided by fetal urine, only a small amount of additional sodium has to be provided by other sources (Tab. III). All of these data indicate the existence of sizable and independent shifts of electrolytes and bulk flow of water between the intra-uterine and maternal compartments. An Impression of the magnitude of these shifts can be derived from tracer exper- iments. GILLIBRAND [13] demonstrated an approximately linear increase in transfer rate of water from the amniotic sac, from 120 ml/hr at 14 weeks to 350 ml/hr at 26 weeks. These results show reasonable agreement withearlierexperimental data [17, 18]. The average water transfer from amniotic fluid to the mother at 12 weeks gestation was calculated to be 64 ml/hr, from the amniotic fluid to the fetus' 11 ml/hr and from the fetus to the amniotic fluid only 2.5 ml/hr. At 20 weeks there is a significant increase in the amount of water r transferred from the fetus to the amniotic fluid (101 ml/hr), showing that at this stage of pregnancy the fetus is going to play a more important part in water transfer to the amniotic fluid. These figures, of course, include all possible routes of diffusional exchange, bulk flow, fetal swallowing and micturition. HUTCHINSON'S [17] observations demonstrateslight differences between the bidirectional fluxes suggesting the existence of a net flux of water from mother to fetus to amniotic fluid to mother. This would be in accordance with the necessity of removing water added by fetal voiding from the amniotic cavity. Though small differences between these high rates of water turnovercannotbe demonstrated with much confidence, the flnding that at term umbilical venous blood contains more water than umbilical arterial blood [15] seems to confirm the existence of a net flux of water from the mother across the placenta to the fetus. Tab. III. Estimated net movements of electrolytes into the amniotic fluid necessary to maintain homeostasis at 20 and 38 weeks [14, 27,31]. Duiation pf pregnancy (wks) concentration in amniotic fluid (mEq/1) removed by fetal swallowing (mEq/24hrs)(l) added with fetal urine (mEq/24 hrs) (2) 20 Na+ . K* 133 4.0 105 2.1 0.06 1.7 3 0.15 3.2 38 Na+ K+ 128 4.0 100 76 2.4' 60 26 2.8 25 er er (1) 16 and 600 ml/24 hrs at 20 and 38 weeks, respectively (2) 50 ml and 600 ml/24 hrs at 20 and 38 weeks, respectively (3) 16 ml/24 hrs at 20 weeks, none at 38 weeks J Perinat. Med. 5 (1977) mEq/24 hrs needed for increase in volume (3) mEq/24 hrs to be provided by another mechanism 2.1 0.06 1.7 1.2 — 0.2 — — 50 — 35 200 3.2 Late pregnancy The volume of the amniotic fluid in the last trimester of pregnancy can be estimated by means of a dilution technique, for which a variety of substances has been used. The reliability of these measurements depends mainly on adequate mixing of the indicator with the amniotic fluid. Most investigators agree that amniotic fluid volume increases to a peak volume of 500—1200 ml at 38-40 weeks and then declines to about 250 ml by 43 weeks. Amniotic fluid osmolality decreases progressively in the second half of pregnancy, whereas maternal serum osmolality remains constant; between 38 and 44 weeks mean amniotic fluid osmolality is 29 mOsm/kglower than that of maternal serum [14]. Also the sodium concentration, which largely \ietermines osmolality,falls äs pregnancy progresses; between 38 and 44 weeks the mean amniotic fluid deficit for sodium compared to matemal and fetal serum is 8.8 mEq/1. A drop in chloride concentration also occurs in the last weeks before term but this is far less marked than the fall in sodium. Usually the concentration of chloride in amniotic fluid at term is somewhat higher than in matched samples of maternal plasma [22]. The weak correlation between the fall in sodium and that in chloride concentration suggests that their exchange is at least partiaUy independent. The potassium levels in maternal serum and amniotic fluid do not significantly change with advancing gestation [14]. Though the fast rate of increase in water transfer between the fetal and maternal compartments and the amniotic fluid seems to slow down somewhat äs pregnancy advances, water exchange reaches enormous values in particular between mother and fetus (3-4 liters/hr) [17]. Approximately 400—500 ml of water leave the amniotic fluid per hour [13] of which about 150 ml (30%) passthroughthe fetus, Sodium and potassium leave the amniotic fluid at rates of 12.0 and 0.5 mEq/hour, respectively, independent of their concentration [18]. Accepting that water leaves the amniotic fluid at term at a rate of 500 ml/hr, this amount of solvent would carry with it about 65 mEq of sodium and 2 mEq of potassium (see Tab. III). The experimentally determined much lower transfer rates for these electrolytes demonstrate Wallenburg, Amniotic fluid. I. again that water and electrolytes are exchanged independently at their own characteristic rates. The drop in amniotic fluid sodium concentration and osmolality with advancing gestation is generally attributed to the fetus passing an increasing amount of hypotonic urine into the amniotic cavity. The phasic addition of urine water is approximately balanced by removal of an equal amount of water by fetal swallowing. Fetal swallowing, however, removes considerable amounts of sodium and chloride from the amniotic fluid which have to be replenished by net movement of these electrolytes back into the amniotic fluid (Tab. III). It has been suggested that hydrochloric acid produced by the fetal stomach might in late pregnancy play a part in the necessary continuous addition of chloride ions to the amniotic fluid. The question arises how and why the amniotic fluid maintains its osmolal deficit. There is no obvious explänation äs to why amniotic fluid sodium should not equilibrate with that of maternal and fetal serum. It is also obvious that the increasing osmolal deficit would theoretically tend to result in loss of water whereas amniotic fluid volume steadily increases up until 38—40 weeks. It is possible that amniotic fluid osmolality serves äs a factor in the control of fetal body water and electrolyte homeostasis [14]. 4 Control of amniotic fluid homeostasis. It has been shown that amniotic fluid behaves äs a separate compartment while rapidly exchanging water and electrolytes with the fetus and the mother. Which mechanisms control and maintain the dynamic equilibrium of water and electrolytes between the amniotic fluid, the fetus and the mother? Phasic transport of water and solutes by fetal swallowing and micturition certainly plays a part in homeostasis but on the other hand creates electrolyte deficits, in particular at term. This necessitates net and independent movement of sodium and chloride into the amniotic cavity. Since there is no evidence for the existence of active transport of water or electrolytes across the membranes or the fetal skin, any net transfer from mother or from fetus to amniotic fluid must take place in response to osmotic or hydraulic forces. J. Perinat. Med. 5 (1977) Wailenburg, Amniotic fluid. L The scanty Information thatisavailable on osmotic gradients between the uterine and umbilical circulations, and between fetal and matemal extracellular fluids and amniotic fluid, suggests that they are almost equal or would appear to exert a force from the fetus to the mother, and from the amniotic fluid to the fetus äs well äs to the mother. However, äs discussed previously, the occurrence of different concentrations of solutes with different reflection coefflcients could result in osmotic water shifts against apparent osmotic gradients. Recent in vitro studies on guinea pig membranes suggest that prolactin, cortisol and ADH, which are normally present in amniotic fluid, could influence the permeability of amnio-chorion to water [23]. The hydrostatic pressure in the umbilical vessels is higher than that prevailing in the intervillous spaces and could therefore be expected to transfer water from the fetus to the mother. On the other hand, with advancing pregnancy increasing fetal hydro- 201 static pressure could force water and solutes into the amniotic fluid through the cord. The existence of a variety of clinical situations in which pathologic alterations in amniotic fluid volume — polyhydramnios and oligohydramnios — are known to occur demonstrates that an imbalance of amniotic fluid water exchange can be due to many different fetal abnormalities and to maternal disease. This suggests that there is not one single factor which controls amniotic fluid volume but that the relative efficiency of all of the discussed pathwaysand mechanisms contributes to the maintenance of amniotic fluid homeostasis. But the overall picture is far from clear. At present our knowledge of the nature and the relative importance of the biochemical and biophysical forces which, together with fetal swallowing and voiding, control the dynamics of the amniotic fluid and its constituents is too meager to be able to postulate a theory which could link all available clinical and experimental data. Keywords: Amniotic fluid, amniotic fluid water and electrolytes, bulk flow, homeostasis, reflection coefficient, amniotic epithelium, fetal micturition, oligohydramnios, polyhydramnios. Zusammenfassung Das Fruchtwasser. I. Wasser und Elektrolythomeostase Viele Forschungsvorhaben konzentrierten sich auf das Studium der Wasser-und Elektrolythomeostase im Fruchtwasser. Diese Untersuchungen beinhalteten morphologische Untersuchungen, in vivo Experimente bei Tier und Mensch und in vitro Untersuchungen an isolierten Präparationen. Jede dieser Methoden hat ihre eigenen, spezifischen Vor- und Nachteile; es gibt keine Methode der Wahl für das Studium der Fruchtwasserproduktion und des Fruchtwasseraustausches. Die verschiedenen epithelialen Strukturen, die die Fruchtwasserhöhle begrenzen, und die verschiedenen fetalen Organe, die direkten Kontakt mit dem Fruchtwasser haben, bilden die möglichen Ursprungsorte und/oder Austauschwege des Fruchtwassers. Das Baugefüge der Amnionzellen der Plazenta und die dazugehörigen Membranen lassen vermuten, daß sie an den Austauschprozessen beteiligt sind, Proteine synthetisieren und möglicherweise Proteine und Lipide abgeben. Das Vorhandensein von Kannälchen mit einem mittleren Radius zw. 20 und 30 A zwischen den Amnionzellen erklärt den Befund, daß die Hauptmenge des Wasseraustausches durch die Eihäute am Termin nahezu 100 mal größer ist als der einfache Transfer von Wasser via Diffusion. Der Austausch von Wasser und gelösten Bestandteilen wird in vivo durch hydraulische, osmotische und elektrochemische Kräfte gesteuert. Auf Grund der eingeschränkten Permeabilität des ChorioJ. Perinat. Med. 5 (1977) amnions für viele Lösungsbestandteile können letztere ihre osmotische Wirksamkeit auf den Wasseraustausch durch die Membranen hindurch nicht in dem Maße ausüben, wie es rechnerisch zu erwarten wäre. Der Quotient aus osmotischer und hydraulischer Membranpermeabilität wird als Reflektionskoeffizient ( ) eines gelösten Stoffes bezeichnet. Die Anwesenheit von Lösungsbestandteilen mit signifikant verschiedenen Reflektionskoeffizienten in zwei Kompartimenten, die durch eine semipermeable Membran voneinander getrennt sind, vermag den Wassertransport gegen einen rechnerisch ermittelten osmotischen Gradienten zu erklären. Dieses Phänomen könnte für den Wassertransport vom mütterlichen Kompartiment in das Fruchtwasser hinein verantwortlich sein, ein Transport, der stattfinden muß, der jedoch auf der BAsis von berechneten osmotischen und hydraulischen Kräften bisher schwer zu erklären ist. Resultate der in vivo und in vitro Experimente weisen darauf hin, daß die Hauptwassermenge auch durch die interzellulären Kannälchen des Nabelschnurepithels hindurch erfolgen kann. Bis zur vollen Keratinisiemng, die ungefähr in der 25. Schwangerschaftswoche erfolgt, ist die fetale Haut für Wasser und Elektrolyte durchlässig. Von diesem Zeitpunkt an ist die fetale Haut nicht mehr als Austauschorgan anzusehen. Am Termin verschluckt der Fetus innerhalb von 24 Stunden ca. die Hälfte, oder sogar mehr, des Fruchtwasservolumens. 202 Es muß daher angenommen werden, daß der fetale Schluckakt den turnover von Fruchtwasser und seinen gelösten Bestandteilen beeinflußt. Die Mehrzahl der verfügbaren Daten läßt vermuten, daß der fetale Respiration^· trakt keine wichtige Rolle spielt beim Austausch von Fruchtwasser und Elektrolyten. Kürzlich wurden Zahlen bekannt über die Menge fetalen Urines, der in die Fruchtwasserhöhle abgegeben wird; diese Zahlen sind durch Ultraschall-Messungen des fetalen Blasenvolumens über eine gewisse Zeit hinweg gewonnen worden. Bei normalen Schwangerschaften steigt die fetale Urinproduktion rasch linear an, von ungefähr 3,5 ml/Std. in der 25. Woche auf ungefähr 26 ml/Std. in der 39. Woche. Nach der 40. Schwangerschaftswoche scheint die fetale Urinproduktion wieder abzunehmen. Diese Daten und die Tatsache, daß im dritten Schwangerschaftstrimester die Konzentration an Natrium und Chlorid sowohl im Fruchtwasser wie im fetalen Urin abnehmen, während Konzentrationen von Harnstoff und Kreatinin in beiden Flüssigkeiten zunimmt, lassen vermuten, daß der fetale Urin die Fruchtwasserzusammensetzung signifikant beeinflußt, zumindest in den letzten Phasen der Schwangerschaft. Es kann gefolgert werden, daß das Chorioamnion und die 'Nabelschnur die wichtigsten Austauschorgane für den kontinuierlichen Wasser- und Elektrolytaustausch sind. Der fetale Urin wird intermittierend in das Fruchtwasser abgegeben, während das Verschlucken des Fruchtwassers durch den Feten ein phasisches Entfernen von Fruchtwassermengen bedeutet. Die relative Wichtigkeit dieser Austauschwege und -mechanismen verändert sich mit zunehmender Tragezeitdauer. In der ersten Schwangerschaftshälfte scheint die Zusammensetzung des Fruchtwassers mehr der fetalen als der mütterlichen extrazellulären Flüssigkeit zu gleichen. In der 20. Schwangerschaftswoche beträgt die tägliche Zunahme an Fruchtwasser ca. 16 ml; daselbe Fruchtwasservolumen wird vom Fetus verschluckt. Ultraschallmessungen der fetalen Urinproduktion zeigen, daß der Fet zu diesem Gestationszeitpunkt um 50 ml pro Tag Urin abgibt. Diese Zahlen vermitteln uns einen Eindruck der Wichtigkeit des nichtphasischen Wassertransportes. Ungefähr 18 ml Wasser müssen pro 24 Stunden aus der Fruchtwasserhöhle entfernt werden. Vorläufige Daten lassen vermuten, daß solche Wasserbewegungen aus dem Amnionsack heraus beschleunigt wird durch Fruchtwasserprolaktin. In der ersten Hälfte der Schwangerschaft kann praktisch alles Kalium und Chlorid des liquor amnii vom fetalen Urin geliefert werden. Nur ein kleiner Anteü zusätzlichen Natriums muß aus anderen Quellen gedekct Wallenburg, Amniotic fluid. I. werden. Diese Daten belegen die Existenz meßbarer und unabhängiger Verschiebungen von Elektrolyten und von Wasser zwischen dem intrautejripen und dem mütterlichen Kompartiment. Diese Auffassung wird gestützt durch Experimente mit markierten Substanzen. Wählend der zweiten Schwangerschaftshälfte wird ein zunehmender Abfall der Osmolalität des Fruchtwassers beobachtet. Dies scheint vorwiegend durch einen Abfall der Natriumkonzentration bedingt zu sein, die ihrerseits auf den Feten zurückgeführt werden kann, der zunehmende Mengen hypotonen Urins in die Amnionhöhle abgibt. Ein Abfall der Chloridkonzentration erfolgt ebenfalls, ist jedoch weit weniger ausgeprägt als der Natriumabfall. Die Kaliumspiegel bleiben praktisch unverändert. Die phasische Wasserzufuhr durch den fetalen Urin wird durch das Verschlucken einer ungefähr gleich großen Fruchtwassermenge durch den Fetus (zwischen 200 und 700 ml pro 24 Stunden am Termin) ausgeglichen. Andererseits wird durch das fetale Verschlucken von Fruchtwasser eine erhebliche Menge an Natrium udn Chlor aus dem Fruchtwasser entfernt. Es kann errechnet werden, daß am Termin ungefähr 50 mEq Natrium und ungefähr 35 mEq Chlor pro Tag ersetzt werden müssen durch reine Verschiebung an Elektrolyten in das Fruchtwasser hinein. Dies belegt erneut den notwendigen, kontinuierlichen und unabhängigen Austausch von Wasser und Elektrolyten. Es gibt jedoch wenig Information darüber, welche Faktoren diesen Austausch im Gleichgewicht halten mit dem phasischen Transport von Wasser und Lösungsbestandteilen durch den fetalen Schlückakt und die Miktion. Die osmotischen Gradienten zwischen uteriner und umbilikaler Zirkulation einerseits und zwischen fetalem und mütterlichem extrazellulären Raum und Fruchtwasser andererseits könnten möglicherweise Kräfte entfalten, die das Wasser aus dem Fruchtwasser herausziehen. Wie jedoch bereits besprochen, könnte die Anwesenheit von Lösungsbestandteilen verschiedener Konzentration mit unterschiedlichen Reflektionskoeffizienten zur Folge haben, daß eine osmotische Wasserbewegung gegen osmotische Gradienten erfolgt. Der mit fortschreitender Schwangerschaf t zunehmende fetale Blutdruck könnte ebenso Wasser und Lösungsbeständteile durch die Nabelschnur hindurch in das Fruchtwasser hineindrücken. Gegenwärtig sind unsere Kenntnisse über die Natur und die relative Bedeutung dieser biochemischen und biophysikalischen Kräfte zu beschränkt, um eine Theorie postuüeren zu können, die alle klinisch verfügbaren und experimentell gewonnenen Daten zusammenfassen könnte. Schlüsselwörter: Amnionepithel, Elektrolyte, Fruchtwasser, Homeostasis, Miktion (fetale), Oligohydramnion, Polyhydramnion. Resume Le liquide amniotique. L Homoeostasis d'eau et d'electrolytes De nombreuses etudes ont ete effectuees sur l'existence d'homoeostasis liquide et electrolytique dans le liquide amniotique. Ces etudes ont ete notamment d'ordre morphologique: experimentations in vivo sur des etres humains et des animaux, recherches in vitro sur des systemes isoles. Chaque methode presente des avantages et des limites specifiques et il n'en existe pas d'exclu- sivement valable pour 1'examen de la production de liquide amniotique et de ses echanges. Les differents types de structures epitheliales qui bordent la cavite amniotique, etlesdiversorganes foetaux qui communiquent diiectement avecleliquideamniotiqueconstituentlessourceseventuelles et:ou les voies d'echange du liquide amniotique. La structure des cellules amniotiques du placenta et des membranes reflexed permet de supposer qu'eiles sont impliquees dans les processus d'echange, synthesent les proteines et secretent eventuellement des proteines et des J. Perinat. Med. 5 (1977) Wallenburg, Amniotic fluid. L lipides. La presence de canaux avec un rayon de pore moyen de20-30° entre Icsccllulesamniotiquesexpliquent les resultats trouves selon lesquels le principal flux d'eau a travers Famnios a terme est presque 100 fois plusgrand que le transfert d'eau par simple diffusion. In vivo, le transfert d'eau et de solute est commande par hydraulise, osmose et electrochimie. Etant donne la permeabilite partielle du chorioamnios a beaucoup de solute s, ceux-ci ne peuvent pas exercer leur pression osmotique transmembraneuse osmotique et hydraulique est defini par le coefficient de reflection ( ) d'un solute. La presence de solutes avec des coefficients de reflection tres differents en deux compartiments, separes par une membrane semipermeable, peut expliquer l'apparition d'un net transfert d'eau contre un gradient osmotique calcule. Ce phenomene peut etre ä Porigine du transfert net d'eau du compartiment maternel au liquide amniotique qui s'opere sans aucun doute bien qu'on puisse difficilement l'expliquer par les forces calculees d'osmose et d'hydraulise. Les resultats des experimentations in vivo et in vitro indiquent que le flux principal d'eau pourrait aussi se faire par les canaux intercellulaires de Fepithelium du cordon ombilical. La peau du foetus est permeable ä l'eau et l'electrolyse jusqu'a keratinisation.complete est survenue aux alentours de la 25eme semaine, moment auquel la peau foetale ne finctionne plus comme voie d'echange. Au terme de la grossesse, le foetus absorbe environ la moitie ou meme plus du volume du liquide amniotique par 24 heures. En consequence, Fabsorption foetale doit etre consideree comme influencant le transfert de l'eau et des solutes du liquide amniotique. La plupart des donnees obtenues laissent supposer que la voie respiratorie du foetus ne joue pas un role important dans Fechange d'eau et d'electrolytes du liquide amniotique. Depuis peu, les donnees recueillies pour les volumes d'urine foetale passee dans la cavite amniotique peuvent etre mesurees par le calcul ultrasonique de l'accroissement du volume de la vessie foetale pendant un certain laps de temps. Dans les grossesses normales, la production d'urine foetale augmente de faqon rapide et continue a raison d'environ 3,5 ml par h. a la 25eme semaine jusqu'a environ 26 ml par h. a la 39eme semaine. Apres la 40eme semaine, la production d'urine foetale semble diminuer. Ces donnees ainsi que Fobservation faite selon laquelle, au 3 emetrimestre de la grossesse, les concentrations de sodium et de chlorures diminuent dans le liquide amniotique et l'urine foetale, tandis qu'y augmentent les concentrations d'uree et de creatinine, semblent prouver que l'urine du foetus represente sans doute un element important du liquide amniotique, au moins dans la derniere partie de la grossesse. On peut en deduire que le chorioamnios et le cordon constituent les principales voies d'echange continu d'eau et de solutes. L'urine foetale s'additionne par intermittence au liquide amniotique, tandis que l'absorption foetale fournit phasiquement des quantites de liquide amniotique. L'importance relative de ces voies et mecanismes evolue selon le stade de la grossesse. Dans la premiere moitie de la grossesse, la composition du liquide amniotique semble se rapprocher davantage du liquide extracellulaire foetal 203 que maternel. A la 20eme semaine de grossesse, l'augmentation quotidicnne du volume de liquide amniotique est approximativement de 16 ml et le meme volume est absorbe par le foetus. La mesure ultrasonique de la production d'urine foetale indique que le foetus elimine environ 50 ml par jour ä cette periode de grossesse. Ces donnees nous livrent une idee de l'importance du transfert d'eau non-phasique. 18 ml d'eau environ doivent etre evacues de la cavite amniotique toutes les 24 h. Des resultatspreliminairesfont supposer qu'une teile evacuation d'eau en dehors du sac amniotique est probablement accrue par une prolactine du liquide amniotique. Dans la premiere moitie de la grossesse, l'urine foetale peut pratiquement fournir la total i te du potassium et des chlorures du liquide amniotique. Seule, une faible quantite de sodium supplementaire doit provenir d'autres sources. Ces donnees indiquent l'existence de transferts mesurables et independants d electrolytes et de flux principal d'eau entre les compartiments intra-uterin et maternel, ainsi que ie confirment les resultats des experiences enregistrees. Dans la seconde moitie de la grossesse, on observe une baisse progressive dans l'osmolalite du liquide amniotique. II semble que cela soit du en grande partie a une baisse de la concentration de sodium qui peut etre attribuee au foetus passant un volume croissant d'urine hypotonique dans la cavite amniotique. Une diminution de la concentration de chlorures s'opere donc, mais sans etre aussi forte que la chute du sodium. Les niveaux de potassium ne changent pratiquement pas. L'addition phasique d'eau urinaire foetale se trouve a peu prcs equilibree par le transfert d'un volume egal d'absorption foetale (entre 200 et 700 ml/24 h. au terme de la grossesse). Par ailleurs, l'absorption foetale retire du liquide amniotique des quantites considerables de sodium et de chlorures. On peut estimer ä 50 mEq et 35 mEq les quantites respectives et approximatives de sodium et de chlorures par 24 h. qui doivent etre redomrees au liquide amniotique par un mouvement net de ces electrolytes, au terme de la grossesse. Ceci prouve a nouveau Fechange necessairement continu et independant d'eau et d'electrolytes. On ne connait pas encore bien, cependant, les facteurs qui maintiennent ces echanges en equilibre avec le transfert d'eau et de solutes par absorption et micturition foetales. Des gradients osmotiques entre les circulations uterine et ombilicale et entre les liquides extracellulaires foetäux et maternels et le liquide amniotique semblent devoir exercer des forces qui retirent l'eau de la cavite amniotique. Comme il a ete discute plus haut cependant, l'apparition de concentrations differentes de solutes avec des coefficients de reflection differents pourraient conduire a des transferts osmotiques d'eau contre des gradients osmotiques apparents. La pression sanguine hydrostatique foetale, augmentant en meme temps qu'avance la grossesse, pourrait donc amener l'eau et les solutes ä passer dans le liquide amniotique a travers le cordon. Notre connaissance de la nature et de l'importance relative de ces forces biochimiques et biophysiques est encore trop limitee actuellement pour nous permettrc de postuler une theorie qui resume et synthese toutes les donnees cüniques et experimentales enregistrees. Mots-cles: Liquide amniotique, eau et electrolytes du liquide amniotique, flux principal, homoeostasis, coefficient de reflection, epithelium amniotique, micturition foetale, oligohydramnios, polyhydramnios. J. Perinat. Med. 5 (1977) 204 Wallenburg, Amniotic fluid. I. Bibliograph/ [1] ABRAMOVICH, D. R., K. R. PAGE, L. JANDIAL: Bulk flows through human fetal membranes. Gynecol. Invest. 7 (1976) 157 [2] ABRAMOVICH, D. R., K. R. PAGE: Pathways of water transfer between liquor amnii and the fetoplacental unit at term. Europ. J. Obstet. Gynec. Reprod.Biol. 3(1973)155 [3] ABRAMOVICH, D. R., B. HEATON, K. R. PAGE: Transfer of labelled urea, creatinine and electrolytes between liquor amnii and the fetoplacental unit in midpregnancy. Europ. J. Obstet. Gynec. Reprod. Biol. 4 (1974) 143 [4] ABRAMOVICH, D. R.: Fetal factors influencing the volume and composition of liquor amnii. J. Obstet. Gynaec. Brit. Cwlth. 77 (1970) 865 [5] ABRAMOVICH, D. R.: The volume of amniotic fluid in early pregnancy. J. Obstet. Gynaec. brit. Cwlth. 75 (1968)728 . [6] ADAMS, F. H., D. T. DES1LETS, B. TOWERS: Control of flow of fetal lung fluid at the laryngeal outlet. Resp. Physiol. 2 (1967) 302 [7] BEHRMAN, R. E., J. T. PARER,C. W. DE LANNOY: Placental growth and the formation of amniotic fluid. Nature 214 (1967) 678 [8] BEVIS, D. C. A.: Errors arising from amniocentesis and the origin of the liquor amnii. J. Obstet. Gynaec. Brit. Cwlth. 75 (1968) 1214 [9] BODDY, K., C. D.MANTELL: Observationsof foetal breathing movements transmitted through maternal abdominal wall. Lancet II (1972) 1219 [10] BODDY, K., G. S. DAWES, R. FISHER: Foetal respiratory movements, electrocorticai and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J. Physiol. 243 (1974) 599 [11] CAMPBELL, S., J. W. WLADIMIROFF, C. J. DEWHURST: The antenatal measurement of fetal urine production. J. Obstet. Gynaec. Brit. Cwlth. 80 (1973) 680 [12] CHARLES, D.: Fetal lung pathology and hydramnios. Obstet. Gynec. 16 (1960) 495 [13] GILLIBRAND, P. N.: The rate of water transfer from the amniotic sac with advancing pregnancy. J. Obstet. Gynaec. Brit. Cwlth. 76 (1969) 530 [14] GILLIBRAND, P. N.: Changes in the electrolytes, urea and osmolality of the amniotic fluid with advancing pregnancy. J. Obstet. Gynaec. Brit. Cwlth. 76(1969)898 [15] HARBERT,G.M.,R.G.BRAME,H.S.MCGAUGHEY, W. N. THORNTON: Fetomaternal water exchange. Obstet. Gynec. 32 (1968) 232 [16] HOPKINSON, J. M.: Congenital absence of the trachea. J. Pathol. 107 (1972) 63 [17] HUTCHINSON, D. L., M. J. GRAY, A. A. PLENTL, H. ALVAREZ, R. CALDEYRO-BARCIA, B. KAPLAN, J. LIND: The role of the fetus in the water exchange of the amniotic fluid of normal and hydramniotic patients. J. Clin. Invest. 38 (1959) 971 [18] HUTCHINSON,D.L.,C. B.'HUNTER^.D.NESLEN, A. A. PLENTL: The exchange of water and electrolytes in the mechanism of amniotic fluid formation and the relationship to hydramnios. Surg. Gynec. Obstet. 100(1955)391 [19]IZZO, C., P. P. RICKHAM: Neonatal pulmonary hamartoma. J. Pediat. Surg. 3 (1968) 77 [20] LILEY, A. W.: Disorders of amniotic fluid, in: ASSALI, N. S.: Pathophysiology of Gestation, volume II. Academic Press, New York & London 1972 [21] LIND, T., A. KENDALL, F. E. HYTTEN: The role of the fetus in the formation of amniotic fluid. J. Obstet. Gynec. Brit. Cwlth. 79 (1972) 289 [22] LIND, T.: The biochemistry of amniotic fluid. In: FAIRWEATHER, D. V. L, T. K. A. B. ESKES: Amniotic Fluid. Excerpta Medica, Amsterdam 1973 [23] MANKU, M. S., J. P. MTABAJI, D. F. HORROBIN: Effectof cortisol, prolactin and ADH on the amniotic membrane. Nature 258 (1975) 78 [24]MCCANCE, R. A., E. M. WIDDOWSON: Renal function before birth. Proc. roy. Soc. Lond. 141 . (1953)488 [25] MCLAIN, JR., C. R.: Amniographic studies of the gastro-intestinal motility of the human fetus. Amer. J. Obstet. Gynec. 86 (1963) 1079 [26] MESCHIA, G., I. SETNIKAR: Experimental study of osmosis through a collodion membrane. J. gen. Physiol. 42 (1958) 429 [27] OTTERLO, L. C. VAN, J. W. WLADIMIROFF, H. C. S. WALLENBURG: Relationship between fetal urine production and amniotic fluid volume in normal pregnancy and pregnancy complicated by diabetes. Brit. J. Obstet. Gynaec. 7 84 (1977) 205 [28] PAGE, K. R., D. R. ABRAMOVICH, M. R. SMITH: Water transport across isolated term human amnion. J. Membrane Biol. 18 (1974) 49 [29] PARRY, E. W., D. R. ABRAMOVICH: Some observations on the surface layer of full-term human umbilical cord epithelium. J. Obstet. Gynec. Brit. Cwlth., 77 (1970) 878 [30] PLENTL, A. A.: Transfer of water across perfused umbüical cord. Proc. Soc. Exp. Biol. Med. 107 (1961) 622 [31] PRITCHARD, J. A.: Deglutition by normal and anencephalic fetuses. Obstet. Gynecol. 25 (1965) 289 [32] PRITCHARD, J. A.: Fetal swallowing and amniotic fluid volume. Obstet. Gynec. 28 (1966) 606 [33] SEEDS, A. E.: Water transfer across the human amnion in response to osmotic gradients. Amer. J. Obstet. Gynec. 98 (1967) 568 [34] SCHRUEFER, J. J. P., A. E. SEEDS, R. E. BEHRMAN, A. E. HELLEGERS, P. BRUNS: Changes in amniotic fluid volume and total solute concentration in the rhesus monkey following replacement with distüled water. Amer. J. Obstet. Gynec. 112 (1972) 807 [35] THOMAS, C. E.: The ultrastructure of human amnion epithelium. J. Ultrastruct. Res. 13 (1965) 65 J. Perinat. Med. 5 (1977) Wallenbuig, Amniotic fluid. L [361 WLADIMIROFF, J. W.f C. M. LIGHTVOET, J. A. SPERMON: Combined one- and two-dimensional ultrasound system for monitoring fetal breathing movemcnts. Brit. Med. J. 2 (1976) 975 [37J WLADIMIROFF, J. W., S. CAMPBELL: Fetal urineproduction rates in normal and complicatcd prcenancy. Lancet l (1974) 151 Henk C. S. Wallenbuig, M.D.. Ph.D. Department Ob-Gynt AZR - Dijkzigt. Dr. Molewaterplesn 40. Rotterdam - 3002, The Netherlands. l l*«»*»«»
© Copyright 2026 Paperzz