IN1.3: INTEGRATION BY SUBSTITUTION Direct Substitution Many functions cannot be integrated using the methods previously discussed. Substitution is used to change the integral into a simpler one that can be integrated. Substitution rule If u = g(x) then du = g ′( x)dx and ∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du Examples Find the following: 1. ∫ (8 x − 5) dx 9 Let u = 8 x − 5 then du = 8dx Substitute for x and dx the original integral 1 ∫ (8 x − 5) dx = ∫ u 8 du ….….because dx = 1/8 du 9 9 1 u10 = + c ………integrate 8 10 ∫ (8 x − 5) dx = 9 (8x − 5) 10 + c …substitute for u to give the answer as a function of x. 80 If possible choose u to be a function in the integrand whose derivative (or a multiple of) also occurs. 2. 2 ∫ x ( x + 2 ) dx 3 ∫ x(x 2 + 2 ) dx = 3 ∫(x 2 u x 2 + 2 du =2xdx + 2 ) xdx ..let = 3 1 3 1 u and xdx = du u du …..…substitute: x 2 + 2 = ∫ 2 2 4 1u = + c …...integrate 2 4 = = IN1.3 – Integration by substitution (x 2 + 2) 8 4 + c ...substitute for u Page 1 of 6 June 2012 3. x ∫ ∫ 1+ 2x 2 x 1 + 2 x2 dx ...............................let u = 1 + 2x 2 , dx = = 4. du = 4x dx 1 1 1 du ………substitute: 1 + 2x 2 =u, x dx = du ∫ 4 4 u 1 − 12 u du 4∫ 1 1 = u 2 + c …………. integrate 2 1 = 1 + 2 x 2 + c ….. substitute for u 2 ∫ sin x cos xdx ..............................let u = sinx ∫ sin x cos xdx = ∫ udu ................substitute: du = cosxdx sinx = u , cosxdx = du u2 + c .............. integrate 2 sin 2 x = + c ..........substitute for u 2 = 5. ∫x e ∫x e 2 4 − x3 dx ……………….…..…let u = 4 − x3 , 2 4 − x3 dx = ∫e 4 − x3 du = −3x 2 dx x 2 dx 1 u 1 e du ……… substitute: 4 − x3 = u, x 2 dx = − du ∫ 3 3 1 = − eu + c ………..integrate 3 1 4 − x3 = − e + c ……… substitute for u 3 = − 6. 4x ∫ 3− x 2 4x ∫ 3− x 2 dx ……………………... let u = 3 − x 2 , du = −2x dx 1 dx = −2 ∫ du …….…….substitute: 3 − x 2 =u, 4x dx = −2 du u = −2 log e u + c ……..integrate = −2 log e 3 − x 2 + c ..substitute for u 7. 2x − 3 dx ………………… … let u = x 2 − 3 x + 7 du = (2 x − 3) dx − 3x + 7 1 2x − 3 2 ∫ x 2 − 3x + 7dx = ∫ u du …………….. substitute: x − 3x + 7 = u, (2 x − 3) dx = du = log e u + c …………. integrate ∫x 2 = log e x 2 − 3 x + 7 + c ....substitute for u IN1.3 – Integration by substitution Page 2 of 6 June 2012 8. ∫ ( cos x + 2 ) sin xdx ………………….. let u = cosx , du = − sinxdx ∫ ( cos x + 2 ) sin xdx = − ∫ ( u + 2 ) du ……substitute ( cos x + 2 ) = ( u 3 3 3 3 3 ) + 2 , sinxdx=−du u4 − 2u + c …… integrate 4 cos 4 x = − − 2 cos x + c ….. substitute for u 4 − = See Exercises 1,2,3 and 4 Specific types Some substitutions are more complicated and it may be necessary to manipulate the integral before substitution. Examples Find 1. ∫x x + 1dx ……… let u = x + 1 , du = dx. 1 2 x + 1dx = ∫ xu du …….substitute x+1 = u, dx = du ∫x After substituting for x + 1 and dx the ‘x’ term remains. To overcome this problem transpose make x the subject then substitute for x. ∫x u = x + 1 , to x + 1dx = ∫ (u − 1) udu … substitute: x + 1 = u, dx = du, x = u − 1 , 3 = 1 ∫ (u 2 − u 2 )du 2 52 2 32 u − u + c ………. integrate 5 3 5 3 2 2 = ( x + 1) 2 − ( x + 1) 2 + c …….. substitute for u 5 3 = 2. ∫x 2 6x + 7 dx + 4 x + 13 In this example the numerator is not a multiple of the derivative of the denominator. The derivative of the denominator is 2x + 4. We need a multiple of 2x + 4 in the numerator. To do this write 6x +7 as 3 (2x + 4) − 5. ∴ ∫x 2 6x + 7 dx = + 4 x + 13 3(2 x + 4) − 5 dx 2 + 4 x + 13 (2 x + 4) 5 = 3∫ 2 dx − ∫ 2 dx x + 4 x + 13 x + 4 x + 13 (2 x + 4) 5 = 3∫ 2 dx − ∫ dx x + 4 x + 13 ( x + 2) 2 + 9 ∫x IN1.3 – Integration by substitution Page 3 of 6 complete the square on the denominator June 2012 (2 x + 4) dx as in example 7 above x + 4 x + 13 2x + 4 2 let u= x + 4 x + 13 du= (2 x + 4) dx 3∫ 2 dx x + 4 x + 13 2x + 4 1 3∫ 2 dx = ∫ du u x + 4 x + 13 = log e u + c Integrate 3∫ 2 = log e x 2 − 3 x + 7 + c ( x + 2) + c 5 5 = arctan dx ∫ ( x + 2)2 + 9 3 3 ( x + 2) + c 5 6x + 7 dx = log e x 2 − 3 x + 7 + arctan 3 3 + 4 x + 13 ∴ ∫x 3. ∫ cos 2 using integration tables. 3 xdx Rewrite the integral as ∫ (1 − sin ∫ (1 − sin ∫ (1 − sin ∫ cos 2 ∫ (1 − sin x cos xdx = 2 x) cos xdx 2 x) cos xdx may be found using the substitution u = sinx 2 x) cos xdx …………..………..let u = sinx , du = cosxdx 2 x) cos xdx = ∫ (1 − u 2 )du ........ substitute sinx =u, cosxdx = du u3 = u − + c ………..integrate 3 sin 3 x = sin x − + c …..substitute for u 3 See Exercise 5 Exercises Exercise 1 Find: (a) ∫ ( 5 x + 1) dx (d) ∫ ( 2 x + 1) ( x (b) ∫ 3 x 2 ( x 3 + 2 ) dx 4 2 5 + x + 3) dx 3 (c) zb 2 g dx x+3 3 (e) ∫ 6 x 2 x3 + 3dx Exercise 2 Find: (b) ∫ sin ( 3 x + 2 ) dx (a) ∫ cos8xdx (d) ∫ 2 cos x sin 2 xdx IN1.3 – Integration by substitution (e) ∫x 2 (c) ∫ sec 2 x tan xdx sin(π − x3 )dx Page 4 of 6 June 2012 Exercise 3 Find: 1 (a) ∫ x + 5dx (d) x ∫ x 2 + 5dx (g) ∫x 2 4 ∫ 3x + 5dx (b) 2x − 3 dx − 3x − 9 (e) 2x2 ∫ x3 − 3dx (h) ∫ 2x (c) ∫ 2+ x (f) ∫ 2sin x + 3dx 2 dx cos x 2 log e x dx x Exercise 4 Find: (a) ∫ e3x dx (b) ∫ e x + 4 dx (d) ∫ 6 x 2 e x dx 3 (g) (e) (c) ∫ e 2−5x dx ∫ cos x.e 2sin x dx ∫ ( 3 − sin x ) cos xdx (f) ∫ cos x dx x 2 Exercise 5 Find: x (a) ∫ ( x − 2 ) dx (d) ∫ sin 3 (b) ∫x 2 4x − 3 dx − 4 x + 20 (c) ∫x 3 1 − x 2 dx xdx IN1.3 – Integration by substitution Page 5 of 6 June 2012 Answers 1. (a) 1 (5x + 1)5 + c 25 (b) 1 3 (x + 2)6 + c 6 (d) 1 2 (x + x + 3)4 + c 4 (e) 3 4 3 x + 3) 2 + c ( 3 −1 +c ( x + 3) 2 (c) 2. 1 sin8x + c 8 2 3 (d) sin x + c 3 1 (b) - cos(3x + 2) + c 3 cos(π − x3 ) (e) +c 3 (a) (c) tan 2 x +c 2 3. 4 ln(3x + 5) + c 3 2 (e) ln(x3 – 3) + c 3 (h) (lnx)2 + c (a) ln(x + 5) + c (b) 1 ln(x2 + 5) + c 2 (g) ln (x2 – 3x – 9) + c (d) (c) ln(2 + x 2 ) + c (f) 1 ln(2sinx +3) + c 2 4. (a) 1 3x e +c 3 (b) ex + 4 + c 3 (d) 2e x + c (e) 1 2sinx e +c 2 1 (c) - e2 – 5x + c 5 (f) 2sin x + c sin 3 x (g) 3sin x − +c 3 5. (a) 3 1 2 ( x − 2) 2 + 4 ( x − 2) 2 + c 3 5 (c) (1 − x 2 ) 2 5 5 x−2 (b) 2 ln( x 2 − 4 x + 20) + arctan +c 4 4 3 − (1 − x 2 ) 2 3 +c IN1.3 – Integration by substitution 1 (d) − cos x + cos3 x + c 3 Page 6 of 6 June 2012
© Copyright 2026 Paperzz