Chap. 10 Moments of Inertia Chapter Outline Definitions of Moments of Inertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of Inertia for Composite Areas Product of Inertia for an Area Moments of Inertia for an Area about Inclined Axes Mohr’s Circle for Moments of Inertia Mass Moment of Inertia Definition moment of inertia about x-axis (second moment) I x = ∫ y 2 dA A polar moment of inertia (units: m4, mm4,…) I y = ∫ x 2 dA A J O = ∫ r 2 dA = I x + I y A 3 Parallel-Axis Theorem I x = I x ' + Ad y 2 I y = I y ' + Ad x 2 J O = J C + Ad 2 4 Radius of Gyration kx = Ix A ky = Iy A kO = JO A By integration 5 6 7 8 9 10 11 p.519, 10-8. Determine the moment of inertia of the shaded area about the x and y axes For x : 12 p.521, 10-24 Determine the moment of inertia of the area about the x and y axes 13 Composite Areas Ex.10-5, compute the moment of inertia of the composite area about the x axis Circle I x = I x ' + Ad y Rectangle 2 1 = π (25) 4 + π (25) 2 (75) 2 4 = 11.4 × 106 mm 4 2 I x = I x ' + Ad y 1 = (100)(150) 3 + (100)(150)(75) 2 12 = 112.5 × 106 mm 4 ∴ I x = (112 .5 − 11.4) × 10 6 = 101 × 10 6 mm 4 1 (100)(150)3 3 p.526, 10-32. Determine the moment of inertia of the composite area about the x axis. 18 p.528, 10-52 Determine the beam’s moment of inertia Iy about the centroidal y axes 20 Mass Moment of Inertia a property that measures the resistance of the body to angular acceleration I = ∫ r 2 dm m units: kg․m2 or slug․ft2 22 Mass Moment of Inertia I = ∫ r 2 ρdV (variable density ρ) I = ρ ∫ r 2 dV (ρ is a constant) V V dV = dxdydz 23 24 25 Mass Moment of Inertia Parallel-Axis Theorem I = ∫m r 2 dm = ∫m [(d + x' ) 2 + y '2 ]dm 0 = ∫m ( x' + y ' )dm + 2d ∫m x' dm + d 2 ∫m dm 2 2 IG: moment of inertia about the axis passing through mass center G Ι = Ι G + md 2 Radius of Gyration I I = mk or k = m 2 26 27 28 29 30 p. 555, 10-100 Determine the mass moment of inertia of the pendulum about an axis perpendicular to the page and passing through point O.The slender rod has a mass of 10 kg and the sphere has a mass of 15 kg. p.564, 10-103. Determine the mass moment of inertia of the over hung crank about3 the x’ axis. The material is steel having a density of ρ = 7.85 Mg/m .
© Copyright 2026 Paperzz