MAC 1140 More practice with Log Properties Section 4.3 Additional Homework In exercises 1 – 10, suppose b is a positive constant greater than 1, and let A, B, and C be logb 3 B logb 2 A logb 5 C defined as follows: In each case, use the properties of logarithms to evaluate the given expression in terms of A, B, and/or C. (In exercises 5 – 10, use the change-of-base formula.) 1. (a) logb 6 (b) logb (1/ 6) (c) logb 27 (d) logb (1/ 27) 2. (a) logb 10 (b) logb 100 (c) logb 0.01 (d) logb 0.3 3. (a) logb (5 / 3) (b) logb 0.6 (c) logb (5 / 9) (d) logb (5 /16) 4. (a) logb 5 (b) logb 15 (c) logb 3 0.4 (d) logb 4 60 5. (a) log3 b (b) log3 (10b) 6. (a) log b2 5 (b) log 7. (a) log3b 2 (b) log3b 15 8. (a) log5b 1.2 (b) log5b 2.5 9. (a) logb 5 log5 b (b) b 2 logb 6 log 6 b 10. (a) log2b 6 log2b (1/ 6) (b) log18 (1/ b) ____________________________________________________________________________ In exercises 11 and 12, suppose that log10 A a , log10 B b , and log10 C c Express the following logarithms in terms of a, b, and/or c. 10 A 11. (a) log10 AB 2C 3 (b) log10 10 A (c) log10 10ABC (d) log10 BC ( AB)5 100 A2 (d) log 10 C B4 3 C _____________________________________________________________________________ In exercises 13 and 14, suppose that ln x t and ln y u . Write each expression in terms of t and/or u. 12. (a) log10 A 2 log10 13. (a) ln(ex) 14. (a) ln e ln x 1 A (b) log10 (b) ln( xy) ln x 2 (b) e ln (ln ( x y )) A 10 (c) log10 (c) ln xy ln ex (c) ln y y ln ex x e (d) ln e2 x y (d) ln x ln 3 ln x 4 x ln( xe 2 ) 2 e Answers: 1. (a) A B (b) A B (c) 3B (d) -3B (d) B A C 2. (a) A C (b) 2 A 2C (c) 3. (a) C B (b) B C (c) C 2B d) C 4 A 4. (a) ½ C (b) ½ B + ½ C (c) ⅓ A - ⅓ C (d) 5. (a) 1 B (b) 6. (a) C 2 (b) 2A 7. (a) 8. (a) A B 1 (b) A B C C 1 2 A 2C 1 1 1 A B C 2 4 4 A C 1 B B C B 1 (b) 9. (a) 1 (b) 1 10. (a) 0 (b) C A C 1 1 A 2B 11. (a) a 2b 3c (b) 1 + ½ a (c) ½ (1 + a + b + c) (d) 1 + a – ½ b – ½ c 12. (a) – a (b) a – 1 (c) 2 + 2a – 4b – ⅓ c (d) 5a + 5b – c 13. (a) 1 + t (b) u – t (c) 14. (a) t (b) t + u (c) 2(1 + t – u) 3 t 2 1 u 1 2 (d) 2 + t + ½ u (d) t
© Copyright 2026 Paperzz