Miskolc Mathematical Notes Vol. 17 (2016), No. 1, pp. 255–266 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2016.748 MULTIPLE FRACTIONAL PART INTEGRALS AND EULER’S CONSTANT OVIDIU FURDUI Received 27 December, 2013 Abstract. The paper is about calculating multiple fractional part integrals of the form p m Z 1Z 1 Z 1Z 1Z 1 1 1 k .x C y/ dxdy and dxdyd´; x Cy x Cy C´ 0 0 0 0 0 where fxg denotes the fractional part of x and k; m and p are nonnegative integers. We show that these integrals can be expressed as series involving products of Riemann zeta function values and some binomial coefficients. We obtain, as particular cases of our results, new integral representations of Euler’s constant as double and triple symmetric fractional part integrals. 2010 Mathematics Subject Classification: 26A42; 26B15; 40A30 Keywords: the Euler–Mascheroni constant, harmonic numbers, fractional part integrals, Riemann zeta function 1. I NTRODUCTION Let m, p and k be nonnegative integers and let Dk;p and Im denote the double and triple symmetric integrals p Z 1Z 1 1 k dxdy (1.1) Dk;p D .x C y/ x Cy 0 0 and Z Im D 0 1Z 1Z 1 0 0 1 x Cy C´ m dxdyd´; (1.2) where fxg denotes the fractional part of x and is therefore related to the floor function by fxg D x bxc. The integral Im can be viewed as a three dimensional version of R1 Havil’s integral 0 f1=xg dx D 1 ([3, pp. 109–111]), while the integral Dk;m generalizes the double symmetric integral Z 1Z 1 1 dxdy x Cy 0 0 c 2016 Miskolc University Press 256 OVIDIU FURDUI proposed by Furdui as a problem in [1] and solved by Qin in [4]. We also consider the multiple integral Z 1 Z 1 1 n Mm dx1 dxn ; D .x1 C x2 C C xn /m x1 C C xn 0 0 where n 2 and m 0 are integers, and we show that this integral can be calculated via a recurrence formula. The goal of this paper is to calculate, in closed form, the three classes of integrals given above and to prove that these integrals can be expressed in terms of series involving products of Riemann zeta function values and some binomial coefficients. We obtain, as particular cases of our results, new integral representations of the Euler–Mascheroni constant in terms of double symmetric fractional part integrals. The organization of the paper is as follows: in the next section we calculate the double integrals Dk;p ; in section 3 we concentrate on the evaluation of the integral n via a recurrence formula. Im and in section 4 we evaluate the integral Mm Before we give the main results of this paper we need to collect a result from [2], Theorem 1 below, which is about calculating the special class of single fractional part integrals Vk;m defined by k Z 1 m 1 dx; Vk;m D x x 0 where k and m are nonnegative integers. Theorem 1. Let m 0 and let k 1 be integers. Then k Z 1 1 X .m C j /Š kŠ m 1 Vk;m D x dx D ..m C j C 1/ x .m C 1/Š .k C j /Š 0 1/: j D1 In particular, one has as a consequence of Theorem 1, the following corollary. Corollary 1. a) Let m 1 be an integer. Then Z 1 m .2/ C .3/ C C .m C 1/ 1 Vm;m D x m dx D 1 : x mC1 0 b) Let m 1 be an integer. Then mC1 Z 1 mC1 X .j / m 1 x dx D HmC1 VmC1;m D ; x j 0 j D2 where HmC1 denotes the .m C 1/th harmonic number. c) Let m 0 be an integer. Then m Z 1 1 1 1 Vm;mC1 D x mC1 dx D C .2/ x 2 .m C 1/.m C 2/ 0 mC1 X i D1 ! i.i C 1/ : MULTIPLE FRACTIONAL PART INTEGRALS 257 Proof. The first two parts of the corollary are proved in [2], so we need to prove only part c) of the corollary. We have, in view of Theorem 1, that 1 Vm;mC1 D mŠ X .m C 1 C j /Š ..m C j C 2/ .m C 2/Š .m C j /Š 1/ j D1 1 X 1 D .m C j C 1/ ..m C j C 2/ .m C 1/.m C 2/ 1/ ; j D1 and the result follows since P1 i D1 i..i C 1/ 1/ D .2/. 2. A DOUBLE SYMMETRIC FRACTIONAL PART INTEGRAL In this section we calculate the double integral Dk;p . We prove that the evaluation of the double integral Dk;p reduces to the calculation of the single integral Vk;m . The main result of this section is the following theorem. Theorem 2. a) Let Dk;p be as in (1.1) and let k be a nonnegative integer. Then 1Z 1 Z Dk;kC1 D 0 0 D 2 ln 2 kC1 1 dxdy x Cy .2/ C .3/ C C .k C 2/ : k C2 .x C y/k b) A new integral formula for Euler’s constant. Let k be a nonnegative integer. Then Z Dk;kC2 D 0 1Z 1 0 k .x C y/ 1 x Cy kC2 dxdy D 1 ln 2 C HkC2 kC2 X i D2 .i / : i c) If p ¤ k C 1 and p ¤ k C 2 then Dk;p D 2k k pC2 2 pC1 2k k pC2 1 C Vp;kC1 : pC2 Proof. We have, based on the substitution x C y D t in the inner integral, that p Z 1 Z xC1 p Z 1 Z 1 1 1 k Dk;p D .x C y/ dy dx D tk dt dx: x Cy t 0 0 0 x We integrate by parts with Z xC1 p 1 f .x/ D tk dt; t x f 0 .x/ D .x C 1/k 1 x C1 p xk p 1 ; x 258 OVIDIU FURDUI g 0 .x/ D 1; g.x/ D x, and we get that p ˇxD1 ˇ 1 dt ˇˇ t x xD0 p p Z 1 1 1 dx x .x C 1/k xk x C 1 x 0 p Z 2 p Z 1 Z 1 1 1 D tk dt x.x C 1/k p dx C x kC1 dx t x 1 0 0 Z 2 Z 1 D t k p dt x.x C 1/k p dx C Vp;kC1 : Z Dk;p D x xC1 tk 1 (2.1) 0 We used the fact that, for x > 0, one has that f1=.1 C x/g D 1=.1Cx/. We distinguish here the following cases. Case p D k C 1. We have, based on (2.1) and part a) of Corollary 1, that Z 1 x dt dx C VkC1;kC1 Dk;kC1 D 0 x C1 1 t D 2 ln 2 1 C VkC1;kC1 1 ..2/ C .3/ C C .k C 2// : D 2 ln 2 k C2 Z 2 Case p D k C 2. We have, in view of (2.1) and part b) of Corollary 1, that D1 Z 1 x dt dx C VkC2;kC1 2 2 t 0 .x C 1/ ln 2 C VkC2;kC1 D1 ln 2 C HkC2 Z Dk;kC2 D 1 2 kC2 X i D2 1 .i /: i Case p ¤ k C 1 and p ¤ k C 2. Equality (2.1) implies that ˇ t k pC1 ˇˇt D2 Dk;p D k p C 1 ˇ t D1 D 2k pC2 k 2 pC1 ˇ .x C 1/k pC2 ˇˇxD1 .x C 1/k pC1 C k p C 2 ˇxD0 k pC1 ˇxD1 ˇ ˇ CVp;kC1 ˇ xD0 2k pC2 and the theorem is proved. k 1 C Vp;kC1 ; pC2 MULTIPLE FRACTIONAL PART INTEGRALS 259 Corollary 2. Let k 0 be an integer. Then k Z 1Z 1 1 k Dk;k D .x C y/ dxdy x Cy 0 0 1 0 kC1 X 1 @.2/ i.i C 1/A : D 1C .k C 1/.k C 2/ i D1 Proof. We have, based on Theorem 2 with p D k, that Dk;k D 1=2 C Vk;kC1 ; and the result follows from part c) of Corollary 1. In particular one has that Z 1Z 1 0 0 1 .x C y/ dxdy D 1 x Cy .3/ 3 and Z 1Z 1 0 0 2 .x C y/ 1 x Cy 2 dxdy D 1 .3/ 6 .4/ : 4 Corollary 3. The following equality holds p Z 1Z 1 1 1 k dxdy D DkC1;p : x.x C y/ x Cy 2 0 0 Proof. We have, by symmetry reasons, that p p Z 1Z 1 Z 1Z 1 1 1 k k dxdy D dxdy; x.x C y/ y.x C y/ x Cy x Cy 0 0 0 0 and it follows that Z 1Z 1 k x.x C y/ 0 0 1 x Cy p p Z Z 1 1 1 1 kC1 dxdy D .x C y/ dxdy 2 0 0 x Cy 1 D DkC1;p ; 2 and the corollary is proved. We have that, for any nonnegative integer k, the following equality holds PkC1 k Z 1Z 1 1 1 .2/ i D1 i.i C 1/ x.x C y/k 1 dxdy D C : x C y 2 2.k C 1/.k C 2/ 0 0 260 OVIDIU FURDUI 3. A TRIPLE H AVIL INTEGRAL In this section we calculate the integral Im , which we call the triple Havil integral, and we prove that the evaluation of this class of integrals reduces to the calculation of the double integral D1;m . The main result of this section is the following theorem. Theorem 3. Let Im be as in (1.2). a) Then I1 D 9 ln 3 2 6 ln 2 .3/ 6 and I2 D 6 ln 2 b) A cubic integral. We have 3 Z 1Z 1Z 1 1 ln 3 I3 D dxdyd´ D x Cy C´ 2 0 0 0 3 ln 3 3 ln 2 5 C 2 3 .2/ C .3/ : 6 2 .2/ 4 .3/ : 6 c) Let m 4 be an integer. Then Im D .7 m/22 m C m 4 33 .m 1/.m 2/.m 3/ m 1 C D1;m : 2 Proof. We have, based on the substitution x C y C ´ D t, that Z 1 Z 1 Z xCyC1 m 1 dt dxdy Im D t 0 0 xCy Z 1 Z 1 Z xCyC1 m 1 dt dx dy: D t 0 0 xCy We calculate the double inner integral by parts with m Z xCyC1 m 1 1 0 f .x/ D dt; f .x/ D t 1Cx Cy xCy 1 x Cy m ; g 0 .x/ D 1; g.x/ D x; and we get that Z xCyC1 m ˇxD1 Z 1 Z xCyC1 m ˇ 1 1 dt dx D x dt ˇˇ t t 0 xCy xCy xD0 m m Z 1 1 1 x dx 1Cx Cy x Cy 0 Z 2Cy Z 1 1 x D dt dx m m 1Cy t 0 .1 C x C y/ m Z 1 1 C x dx: x Cy 0 MULTIPLE FRACTIONAL PART INTEGRALS 261 Thus, 1 Z 2Cy Z Im D 0 Z C Z D 0 1Cy 1Z 1 1 tm Z 1Z 1 dt dy 0 0 x dxdy .1 C x C y/m m x 0 0 1 Z 2Cy 1Cy t 1 dxdy x Cy Z 1Z 1 dt dy m 0 0 (3.1) 1 x 1 dxdy C D1;m : m .1 C x C y/ 2 We distinguish the following cases. Case m D 1. We have, based on (3.1) and Corollary 2, that Z 1 Z 1Z 1 x 1 2Cy I1 D ln dy dxdy C D1;1 1Cy 2 0 0 0 1Cx Cy 9 ln 3 .3/ D 6 ln 2 : 2 6 Case m D 2. A calculation, based on (3.1) and part a) of Theorem 2, shows that Z 1Z 1 1 4 x dxdy C D1;2 I2 D ln 2 3 .1 C x C y/ 2 0 0 .2/ C .3/ D 6 ln 2 3 ln 3 : 6 Case m D 3. We have, based on (3.1) and part b) of Theorem 2, that Z 1Z 1 1 x 1 dxdy C D1;3 I3 D 3 6 2 0 0 .1 C x C y/ ln 3 3 ln 2 5 .2/ .3/ D C : 2 2 3 2 4 6 Case m 4. A calculation, based on (3.1), shows that Im D .7 and the theorem is proved. m/ 22 m C m 4 33 .m 1/.m 2/.m 3/ m 1 C D1;m ; 2 Remark 1. It is worth mentioning that this integral is recorded in [5] as the second part of Theorem 8. However, Qin and Lu have skipped the calculations of Im and instead they calculated a double integral and explained how the triple integral can be calculated by analogy. It turns out that the values of Im when m D 1; 2 and 3, as given by Qin and Lu, are incorrect and by our method, which is different than the one mentioned in [5], these values are corrected. 262 OVIDIU FURDUI 4. A SPECIAL CLASS OF INTEGRALS AND A RECURRENCE FORMULA In this section we consider the multiple integral Z 1 Z 1 1 n m dx1 dxn ; Mm D .x1 C x2 C C xn / x1 C C xn 0 0 where n 2 and m 0 are integers, and we show that this integral can be calculated via a recurrence formula. The main result of the section is the following theorem. Theorem 4. Let n 2 and m 0 be integers. The following recurrence formulas hold Z 1 Z 1 1 n n 1 M0 D M C ln.1 C x1 C C xn 1 /dx1 dxn 1 n 1 1 0 0 Z 1 Z 1 ln.1 C x1 C C xn 2 /dx1 dxn 2 0 0 and, for m 1, n Mm D 1 n 1 m n 1 C MmC1 1 Z 0 1 Z 0 1 m Z 0 1 Z 0 1 .1 C x1 C C xn 1 .1 C x1 C C xn m 1 / dx1 dxn 1 m 2 / dx1 dxn 2 : Proof. We discuss only the case when m 1 since the case when m D 0 is handled similarly. We have, in view of the substitution x1 C C xn D y, that Z 1 Z 1 1 n m Mm D .x1 C x2 C C xn / dx1 dxn x1 C C xn 0 0 Z 1 Z 1 Z 1Cx1 CCxn 1 m 1 D y dy dx1 dxn 1 y 0 0 x1 CCxn 1 Z 1 Z 1 Z 1 Z 1Cx1 CCxn 1 m 1 D y dy dxn 1 dx2 dx1 : y 0 0 0 x1 CCxn 1 R 1Cx1 CCxn 1 R 1 R 1Cx1 CCxn 1 R x1 CCxn 1 Since x1 CCx D 0C 1 , we have 0 n 1 Z 1Cx1 CCxn 1 1 ym dy y x1 CCxn 1 Z 1 Z 1Cx1 CCxn 1 Z x1 CCxn 1 m 1 m 1 m 1 D y dy C y dy y dy y y y 0 1 0 Z 1 Z x1 CCxn 1 1 .1 C x1 C C xn 1 /m 1 1 D ym dy C ym dy; y m y 0 0 MULTIPLE FRACTIONAL PART INTEGRALS and it follows that Z 1 Z 0 Z C 1Cx1 CCxn 1 1 y dy dxn y m x1 CCxn 1 1 .1 C x1 C C xn 1 /m m 0 Z 1 Z x1 CCxn 1 0 0 We calculate the integral Z 1 Z 0 Z 1 D 0 1 263 1 y dy y m 1 dxn 1 m 1 y dy dxn 1 : y x1 CCxn 0 1 1 y dy dxn y m 1 by parts with g 0 .xn x1 CCxn 1 f .xn 1 / D y dy; y 0 1 0 m f .xn 1 / D .x1 C C xn 1 / ; x1 C C xn 1 1 / D 1, g.xn 1 / D xn 1 , and we get that Z 1 Z x1 CCxn 1 1 dy dxn 1 ym y 0 0 ˇxn 1 D1 Z x1 CCxn 1 ˇ m 1 D xn 1 y dy ˇˇ y 0 xn 1 D0 Z 1 1 m dxn xn 1 .x1 C C xn 1 / x1 C C xn 1 0 Z 1Cx1 CCxn 2 m 1 D y dy y 0 Z 1 1 m dxn xn 1 .x1 C C xn 1 / x1 C C xn 1 0 Z 1 Z 1Cx1 CCxn 2 m 1 m 1 D y dy C y dy y y 0 1 Z 1 1 m xn 1 .x1 C C xn 1 / dxn x1 C C xn 1 0 Z 1 .1 C x1 C x2 C C xn 2 /m 1 m 1 D y dy C y m 0 Z 1 1 xn 1 .x1 C C xn 1 /m dxn x1 C C xn 1 0 Z 1 m 1 1 1 1: 264 OVIDIU FURDUI Thus, 1 Z 1Cx1 CCxn Z 0 x1 CCxn 1 1 y dy dxn y m 1 1 .1 C x1 C C xn 1 /m dxn m 0 .1 C x1 C C xn 2 /m m Z 1 m C xn 1 .x1 C C xn 1 / Z D 1 1 1 dxn 1 : x1 C C xn 1 0 Integrating with respect to variables x1 ; : : : ; xn 2 , we get that Z 1 Z 1 .1 C x1 C C xn 1 /m n Mm dx1 dxn 1 D m 0 0 Z 1 Z 1 .1 C x1 C C xn 2 /m dx1 dxn 2 m 0 0 Z 1 Z 1 1 m dx1 dxn C xn 1 .x1 C C xn 1 / x1 C C xn 1 0 0 1: By symmetry, for all i; j D 1; : : : ; n 1, one has that Z 1 Z 1 1 m xi .x1 C C xn 1 / dx1 dxn 1 x1 C C xn 1 0 0 Z 1 Z 1 1 dx1 dxn D xj .x1 C C xn 1 /m x1 C C xn 1 0 0 and hence Z 1 Z 0 1 1 xn 1 .x1 C C xn 1 / dx1 dxn 1 x1 C C xn 1 0 Z 1 Z 1 1 1 D .x1 C C xn 1 /mC1 dx1 dxn n 1 0 x1 C C xn 1 0 m 1; 1: It follows that n Mm D 1 n 1 m n 1 MmC1 C 1 Z 0 1 Z R1 0 1 m Z 0 1 Z 0 1 .1 C x1 C C xn 1 .1 C x1 C C xn m 1 / dx1 dxn 1 m 2 / dx1 dxn 2 : R1 Integrals of the form 0 0 .1 C x1 C C xk /m dx1 dxk are calculated by using the multinomial formula. The case when m D 0 follows by a similar argument. The theorem is proved. MULTIPLE FRACTIONAL PART INTEGRALS 265 Now we show how this recurrence formulas can be used for establishing the integral equalities Z 1Z 1Z 1 1 9 .3/ 3 M0 D dxdyd´ D ln 3 6 ln 2 x Cy C´ 2 6 0 0 0 and M13 D Z 0 1Z 1Z 1 0 0 .x C y C ´/ 1 dxdyd´ x Cy C´ 1 5 1 X D C .2 C j /.3 C j / ..j C 4/ 6 48 1/ : j D1 We have, based on Theorem 4 with m D 0 and n D 3, that Z 1Z 1 Z 1 1 2 3 ln.1 C x C y/dxdy ln.1 C x/dx M0 D M1 C 2 0 0 0 1 1 D D1;1 C .9 ln 3 8 ln 2 3/ .2 ln 2 1/ 2 2 9 .3/ D ln 3 6 ln 2 : 2 6 On the other hand, M13 Z 1Z 1 Z 1 1 2 D M2 C .1 C x C y/dxdy .1 C x/dx 2 0 0 0 1 1 1 1 D D2;1 C D C V1;3 2 2 3 2 1 X 5 1 D C .2 C j /.3 C j / ..j C 4/ 1/ ; 6 48 j D1 where the last equality follows from Theorem 1 with k D 1 and m D 3. R EFERENCES [1] O. Furdui, “Problem 150, Problems,” Missouri J. Math. Sci., vol. 16, no. 2, 2004. [2] O. Furdui, “Exotic fractional part integrals and Euler’s constant,” Analysis, vol. 31, pp. 249–257, 2011, doi: 10.1524/anly.2011.1131. [3] J. Havil, Gamma. Exploring Euler’s constant. Princeton and Oxford: Princeton University Press, 2003. [4] H. Qin, “Problem 150, Solutions,” Missouri J. Math. Sci., vol. 17, no. 3, 2005. [5] H. Qin and Y. Lu, “Integrals of fractional parts and some new identities on Bernoulli numbers,” Int. J. Contemp. Math. Sciences, vol. 6, no. 15, pp. 745–761, 2011. 266 OVIDIU FURDUI Author’s address Ovidiu Furdui Technical University of Cluj-Napoca, Department of Mathematics, Str. Memorandumului Nr. 28, 400114 Cluj-Napoca, Romania E-mail address: [email protected]
© Copyright 2026 Paperzz