Instructor: Dr. R.A.G. Seely Test 1 (Sept 2016) (Version A) Cal I (S) (Maths 201–NYA) Answers 1. (a) lim h→0 1 1 − 2x+1 2(x+h)+1 √ (b) lim h→0 √ 4−x−h− 4−x h 2. (2x+1)−(2x+2h+1) h→0 h(2x+2h+1)(2x+1) = lim (4−x−h)−(4−x) √ √ h→0 h( 4−x−h+ 4−x) = lim = lim h = lim −h h→0 2h(2x+2h+1)(2x+1) = −2 (2x+1)2 −h √ √ h→0 h( 4−x−h+ 4−x) = √−1 2 4−x y 6 a x c b 24 3 9 −4 x − x (b) y 0 = ex (6x5 − x1/3 + 1 + 30x4 − 13 x−2/3 ) 5 5 (3x2 − 6x)(x − 3x−2 ) − (x3 − 3x2 + 2)(1 + 6x−3 ) (c) y 0 = (x − 3x−2 )2 3. (a) y 0 = 75x2 − (d) y 0 = sec(x2 ) tan(x2 ) · 2x · cos(2x3 + 1) − sec(x2 ) sin(2x3 + 1)(6x2 ) (3x7 + 2x3 − 1)9 4. (a) y = q 0 0 5x21 − (b) y = (2x + 1) 5. y 0 = −5 sin(x2 +3) 21x6 + 6x2 1 105x20 + 5x−2 9 7 − 3x + 2x3 − 1 2 5x21 − 5/x − 5 # 2 2x cos(x + 3) ln(2x + 1) + sin(x + 3) 2x + 1 2 2 (12x + 10)(2x3 + 5x2 − 7) − (6x2 + 10x)2 6x2 + 10x 00 so y = 2x3 + 5x2 − 7 (2x3 + 5x2 − 7)2 6. (a) y 0 = (b) 5 x " 1 , so slope = (2x+1)2 3 +y 4 −y y 0 = − 3x2xy 2 y 2 +4xy 3 −x , so 1/9. Equation: y = 19 x + 29 . slope= −2/9. Equation: y = − 29 x + 7. (a) y 0 = 6x−1/3 (x − 5) + 9x2/3 = 0 if 5x = 10, so x = 2 (b) x = ±1 8. f 0 (3) = 7 Remark: The graph of y = 9x2/3 (x − 5) looks like this: 13 9 .
© Copyright 2026 Paperzz